Publications

Results 1–50 of 133
Skip to search filters

Processing, structure, and thermal properties of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics

Bishop, Sean R.; Lowry, Daniel R.; Peretti, Amanda S.; Blea-Kirby, Mia A.; Salinas, Perla A.; Coker, Eric N.; Arata, Edward R.; Rodriguez, Mark A.; Murray, Shannon E.; Mahaffey, Jacob T.; Biedermann, Laura B.

Negative and zero coefficient of thermal expansion (CTE) materials are of interest for developing polymer composites in electronic circuits that match the expansion of Si and in zero CTE supports for optical components, e.g., mirrors. In this work, the processing challenges and stability of ZrW2O8, HfW2O8, HfMgW3O12, Al(HfMg)0.5W3O12, and Al0.5Sc1.5W3O12 negative and zero thermal expansion coefficient ceramics are discussed. Al0.5Sc1.5W3O12 is demonstrated to be a relatively simple oxide to fabricate in large quantity and is shown to exhibit single phase up to 1300 °C in air and inert N2 environments. The negative and zero CTE behavior was confirmed with dilatometry. Thermal conductivity and heat capacity were reported for the first time for HfMgW3O12 and Al0.5Sc1.5W3O12 and thermal conductivity was found to be very low (~0.5 W/mK). Grüneisen parameter is also estimated. Methods for integration of Al0.5Sc1.5W3O12 with other materials was examined and embedding 50 vol% of the ceramic powder in flexible epoxy was demonstrated with a commercial vendor.

More Details

Surface Functionalized Barium Titanate Nanoparticles: A Combined Experimental and Computational Study

ECS Journal of Solid State Science and Technology

Domrzalski, Jessica N.; Stevens, Tyler E.; Van Ginhoven, Renee M.; Fritzsching, Keith F.; Walder, Brennan W.; johnson, Emily j.; Lewis, Riley E.; Vreeland, Erika C.; Pearce, Charles J.; Vargas, David A.; Coker, Eric N.; Grey, John K.; Monson, Todd M.

Barium titanate (BTO) nanoparticles show great potential for use in electrostatic capacitors with high energy density. This includes both polymer composite and sintered capacitors. However, questions about the nanoparticles' size distribution, amount of agglomeration, and surface ligand effect on performance properties remain. Reducing particle agglomeration is a crucial step to understanding the properties of nanoscale particles, as agglomeration has significant effects on the composite dielectric constant. BTO surface functionalization using phosphonic acids is known reduce BTO nanoparticle agglomeration. We explore solution synthesized 10 nm BTO particles with tert-butylphosphonic acid ligands. Recent methods to quantifying agglomeration using an epoxy matrix before imaging shows that tert-butylphosphonic acid ligands reduce BTO agglomeration by 33%. Thermometric, spectroscopic, and computational methods provide confirmation of ligand binding and provide evidence of multiple ligand binding modes on the BTO particle surface.

More Details

Thermochemical characterization of intumescent materials and their application in FEM models using Aria

Babiniec, Sean M.; Reinholz, Emilee L.; Coker, Eric N.; Larsen, Marin E.

Intumescent materials are in wide use as protective coatings in fire protection or thermal management applications. These materials undergo chemical reactions occurring from approximately 300°C to 900°C, which outgas and expand the material, providing an appreciable increase in insulative performance. However, the complicated chemical mechanisms and large changes in materials properties complicate the incorporation of these materials into predictive thermal models. This document serves to outline the thermochemical characterization of select intumescent materials, the extraction of relevant parameters, and the incorporation of these parameters into the ChemEQ reaction model implemented in Aria. This work was performed in 2016 and documented in a draft SAND report in March 2017. In 2022, the draft SAND report was discovered and put through R&A.

More Details

Control of Structural Hydrophobicity and Cation Solvation on Interlayer Water Transport during Clay Dehydration

Nano Letters

Ho, Tuan A.; Coker, Eric N.; Jove Colon, Carlos F.; Wang, Yifeng

Swelling clay hydration/dehydration is important to many environmental and industrial processes. Experimental studies usually probe equilibrium hydration states in an averaged manner and thus cannot capture the fast water transport and structural change in interlayers during hydration/dehydration. Using molecular simulations and thermogravimetric analyses, we observe a two-stage dehydration process. The first stage is controlled by evaporation at the edges: water molecules near hydrophobic sites and the first few water molecules of the hydration shell of cations move fast to particle edges for evaporation. The second stage is controlled by slow desorption of the last 1-2 water molecules from the cations and slow transport through the interlayers. The two-stage dehydration is strongly coupled with interlayer collapse and the coordination number changes of cations, all of which depend on layer charge distribution. This mechanistic interpretation of clay dehydration can be key to the coupled chemomechanical behavior in natural/engineered barriers.

More Details

Tritium Fires: Simulation and Safety Assessment

Brown, Alexander B.; Shurtz, Randy S.; Takahashi, Lynelle K.; Coker, Eric N.; Hewson, John C.; Hobbs, Michael L.

This is the Sandia report from a joint NSRD project between Sandia National Labs and Savannah River National Labs. The project involved development of simulation tools and data intended to be useful for tritium operations safety assessment. Tritium is a synthetic isotope of hydrogen that has a limited lifetime, and it is found at many tritium facilities in the form of elemental gas (T2). The most serious risk of reasonable probability in an accident scenario is when the tritium is released and reacts with oxygen to form a water molecule, which is subsequently absorbed into the human body. This tritium oxide is more readily absorbed by the body and therefore represents a limiting factor for safety analysis. The abnormal condition of a fire may result in conversion of the safer T2 inventory to the more hazardous oxidized form. It is this risk that tends to govern the safety protocols. Tritium fire datasets do not exist, so prescriptive safety guidance is largely conservative and reliant on means other than testing to formulate guidelines. This can have a consequence in terms of expensive and/or unnecessary mitigation design, handling protocols, and operational activities. This issue can be addressed through added studies on the behavior of tritium under representative conditions. Due to the hazards associated with the tests, this is being approached mainly from a modeling and simulation standpoint and surrogate testing. This study largely establishes the capability to generate simulation predictions with sufficiently credible characteristics to be accepted for safety guidelines as a surrogate for actual data through a variety of testing and modeling activities.

More Details

Computationally Accelerated Discovery and Experimental Demonstration of Gd0.5La0.5Co0.5Fe0.5O3 for Solar Thermochemical Hydrogen Production

Frontiers in Energy Research

Park, James E.; Bare, Zachary J.L.; Morelock, Ryan J.; Rodriguez, Mark A.; Ambrosini, Andrea A.; Musgrave, Charles B.; McDaniel, Anthony H.; Coker, Eric N.

Solar thermochemical hydrogen (STCH) production is a promising method to generate carbon neutral fuels by splitting water utilizing metal oxide materials and concentrated solar energy. The discovery of materials with enhanced water-splitting performance is critical for STCH to play a major role in the emerging renewable energy portfolio. While perovskite materials have been the focus of many recent efforts, materials screening can be time consuming due to the myriad chemical compositions possible. This can be greatly accelerated through computationally screening materials parameters including oxygen vacancy formation energy, phase stability, and electron effective mass. In this work, the perovskite Gd0.5La0.5Co0.5Fe0.5O3 (GLCF), was computationally determined to be a potential water splitter, and its activity was experimentally demonstrated. During water splitting tests with a thermal reduction temperature of 1,350°C, hydrogen yields of 101 μmol/g and 141 μmol/g were obtained at re-oxidation temperatures of 850 and 1,000°C, respectively, with increasing production observed during subsequent cycles. This is a significant improvement from similar compounds studied before (La0.6Sr0.4Co0.2Fe0.8O3 and LaFe0.75Co0.25O3) that suffer from performance degradation with subsequent cycles. Confirmed with high temperature x-ray diffraction (HT-XRD) patterns under inert and oxidizing atmosphere, the GLCF mainly maintained its phase while some decomposition to Gd2-xLaxO3 was observed.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny R.; Guglielmi, Yves G.; Sasaki, Tsubasa S.; Deng, Hang D.; Li, Pei L.; Steefel, Carl S.; Tournassat, Christophe T.; Xu, Hao X.; Babhulgaonkar, Shaswat B.; Birkholzer, Jens T.; Sauer, Kirsten B.; Caporuscio, Florie C.; Rock, Marlena J.; Zavarin, Mavrik Z.; Wolery, Thomas J.; Chang, Elliot C.; Wainwright, Haruko W.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Pyrolysis Modeling of PMMA decomposition studied by TGA

Coker, Eric N.; Scott, Sarah N.; Brown, Alexander B.

Data from four TGA experiments conducted at Sandia National Laboratories was used for determination of a pyrolysis model using a commercial thermokinetics program developed by Netzsch Instruments (Kinetics NEO, version 2.1). The data measured at 1 K/min and the average of three measurements at 50 K/min were used as input into Kinetics NEO. The model was developed using data in the range 373 to 773 K. An initial estimate of the energy of activation (E) and pre-exponential constant (A) were determined from the model-free Friedman approach.

More Details

Compositional and operational impacts on the thermochemical reduction of CO2to CO by iron oxide/yttria-stabilized zirconia

RSC Advances

Coker, Eric N.; Ambrosini, Andrea A.; Miller, James E.

Ferrites have potential for use as active materials in solar-thermochemical cycles because of their versatile redox chemistry. Such cycles utilize solar-thermal energy for the production of hydrogen from water and carbon monoxide from carbon dioxide. Although ferrites offer the potential for deep levels of reduction (e.g., stoichiometric conversion of magnetite to wüstite) and correspondingly large per-cycle product yields, in practice reactions are limited to surface regions made smaller by rapid sintering and agglomeration. Combining ferrites with zirconia or yttria-stabilized zirconia (YSZ) greatly improves the cyclability of the ferrites and enables a move away from powder to monolithic systems. We have studied the behavior of iron oxides composited with YSZ using thermogravimetric analysis under operando conditions. Samples in which the iron was fully dissolved within the YSZ matrix showed greater overall extent of thermochemical redox and higher rate of reaction than samples with equal iron loading but in which the iron was only partially dissolved, with the rest existing as agglomerates of iron oxide within the ceramic matrix. Varying the yttria content of the YSZ revealed a maximum thermochemical capacity (yield per cycle) for 6 mol% Y2O3 in YSZ. The first thermochemical redox cycle performed for each sample resulted in a net mass loss that was proportional to the iron oxide loading in the material and was stoichiometrically consistent with complete reduction of Fe2O3 to Fe3O4 and further partial reduction of the Fe3O4 to FeO. Mass gains upon reaction with CO2 were consistent with re-oxidation of the FeO fraction back to Fe3O4. The Fe dissolved in the YSZ matrix, however, is capable of cycling stoichiometrically between Fe3+ and Fe2+. Varying the re-oxidation temperature between 1000 and 1200 °C highlighted the trade-off between re-oxidation rate and equilibrium limitations. This journal is

More Details

Fast Advective Water Flow through Nanochannels in Clay Interlayers: Implications for Moisture Transport in Soils and Unconventional Oil/Gas Production

ACS Applied Nano Materials

Ho, Tuan A.; Wang, Yifeng; Jove Colon, Carlos F.; Coker, Eric N.

Water flow in nanometer or sub-nanometer hydrophilic channels bears special importance in diverse fields of science and engineering. However, the nature of such water flow remains elusive. Here, we report our molecular-modeling results on water flow in a sub-nanometer clay interlayer between two montmorillonite layers. We show that a fast advective flow can be induced by evaporation at one end of the interlayer channel, that is, a large suction pressure created by evaporation (∼818 MPa) is able to drive the fast water flow through the channel (∼0.88 m/s for a 46 Å-long channel). Scaled up for the pressure gradient to a 2 μm particle, the velocity of water is estimated to be about 95 μm/s, indicating that water can quickly flow through a μm-sized clay particle within seconds. The prediction seems to be confirmed by our thermogravimetric analysis of bentonite hydration and dehydration processes, which indicates that water transport at the early stage of the dehydration is a fast advective process, followed by a slow diffusion process. The possible occurrence of a fast advective water flow in clay interlayers prompts us to reassess water transport in a broad set of natural and engineered systems such as clay swelling/shrinking, moisture transport in soils, water uptake by plants, water imbibition/release in unconventional hydrocarbon reservoirs, and cap rock integrity of supercritical CO2 storage.

More Details

Establishing the effects of mesoporous silica nanoparticle properties on in vivo disposition using imaging-based pharmacokinetics

Nature Communications

Dogra, Prashant; Adolphi, Natalie L.; Wang, Zhihui; Lin, Yu S.; Butler, Kimberly B.; Durfee, Paul N.; Coker, Eric N.; Bearer, Elaine L.; Cristini, Vittorio; Brinker, C.J.

The progress of nanoparticle (NP)-based drug delivery has been hindered by an inability to establish structure-activity relationships in vivo. Here, using stable, monosized, radiolabeled, mesoporous silica nanoparticles (MSNs), we apply an integrated SPECT/CT imaging and mathematical modeling approach to understand the combined effects of MSN size, surface chemistry and routes of administration on biodistribution and clearance kinetics in healthy rats. We show that increased particle size from ~32- to ~142-nm results in a monotonic decrease in systemic bioavailability, irrespective of route of administration, with corresponding accumulation in liver and spleen. Cationic MSNs with surface exposed amines (PEI) have reduced circulation, compared to MSNs of identical size and charge but with shielded amines (QA), due to rapid sequestration into liver and spleen. However, QA show greater total excretion than PEI and their size-matched neutral counterparts (TMS). Overall, we provide important predictive functional correlations to support the rational design of nanomedicines.

More Details

Versatile Surface Functionalization of Metal–Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

Advanced Functional Materials

Zhu, Wei; Xiang, Guolei; Shang, Jin; Guo, Jimin; Motevalli, Benyamin; Durfee, Paul; Agola, Jacob O.; Coker, Eric N.; Brinker, C.J.

A novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Finally, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

More Details

Anomalous Oxidative Diffusion in Titanium Pyrotechnic Powders

Propellants, Explosives, Pyrotechnics

Erikson, William W.; Coker, Eric N.

It has long been observed that oxidation processes in metals tend to follow a parabolic rate law associated with the growth of a surface oxide layer. Here we observe that for certain titanium powders, the expected parabolic law (∝ t1/2) is recovered, yet for others, the exponent differs significantly. One explanation for this non-parabolic, anomalous diffusion arises from fractal geometry. Theo retical considerations indicate that the time response of diffusion-limited processes in an object closely follow a power-law in time (tn) with n=(E−D)/2, where E is the object's Euclidean dimension and D is its boundary's Hausdorff dimension. Non-integer, (fractal) values of D will result in n≠1/2. Finite element simulations of several canonical fractal objects were performed to verify the application of this theory; the results matched the theory well. Two different types of titanium powder were tested in isothermal thermogravimetric tests under dilute oxygen. Time-dependent mass uptake data were fit with power-law forms and the associated exponents were used to determine an equivalent fractal dimension. One Ti powder type has an implied surface dimension of ca. 2.3 to 2.5, suggesting fractal geometry may be operative. The other has a dimension near 2.0, indicating it behaves like traditional material.

More Details

Copper-silicon-magnesium alloys for latent heat storage

Metallurgical and Materials Transactions. E, Materials for Energy Systems

Gibbs, Paul J.; Withey, Elizabeth A.; Coker, Eric N.; Kruizenga, Alan M.; Andraka, Charles E.

The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

More Details

Monitoring of CoS2 reactions using high-temperature XRD coupled with gas chromatography (GC)

Powder Diffraction

Rodriguez, Mark A.; Coker, Eric N.; Griego, James J.M.; Mowry, Curtis D.; Pimentel, Adam S.; Anderson, Travis M.

High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K2SO4 that subsequently reacted with the pyrite-type CoS2 phase leading to cathode decomposition between ∼260 and 450 °C. Independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS2 decomposition. Both gas analysis measurements (i.e. GC and MS) from the independent experiments confirmed the formation of SO2 off-gas species during breakdown of the CoS2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS2 throughout the entire temperature range of analysis.

More Details
Results 1–50 of 133
Results 1–50 of 133