Publications

3 Results
Skip to search filters

Single Photon Detection with On-Chip Number Resolving Capability

Chatterjee, Eric N.; Davids, Paul D.; Nenoff, T.M.; Pan, Wei P.; Rademacher, David R.; Soh, Daniel B.

Single photon detection (SPD) plays an important role in many forefront areas of fundamental science and advanced engineering applications. In recent years, rapid developments in superconducting quantum computation, quantum key distribution, and quantum sensing call for SPD in the microwave frequency range. We have explored in this LDRD project a new approach to SPD in an effort to provide deterministic photon-number-resolving capability by using topological Josephson junction structures. In this SAND report, we will present results from our experimental studies of microwave response and theoretical simulations of microwave photon number resolving detector in topological Dirac semimetal Cd3As2. These results are promising for SPD at the microwave frequencies using topological quantum materials.

More Details

Lossless Quantum Hard-Drive Memory Using Parity-Time Symmetry

Chatterjee, Eric N.; Soh, Daniel B.; Young, Steve M.

We theoretically studied the feasibility of building a long-term read-write quantum memory using the principle of parity-time (PT) symmetry, which has already been demonstrated for classical systems. The design consisted of a two-resonator system. Although both resonators would feature intrinsic loss, the goal was to apply a driving signal to one of the resonators such that it would become an amplifying subsystem, with a gain rate equal and opposite to the loss rate of the lossy resonator. Consequently, the loss and gain probabilities in the overall system would cancel out, yielding a closed quantum system. Upon performing detailed calculations on the impact of a driving signal on a lossy resonator, our results demonstrated that an amplifying resonator is physically unfeasible, thus forestalling the possibility of PT-symmetric quantum storage. Our finding serves to significantly narrow down future research into designing a viable quantum hard drive.

More Details
3 Results
3 Results