The role of polymer composite binder on performance of lithium ion batteries
Abstract not provided.
Abstract not provided.
International Journal of Heat and Mass Transfer
Ceramic fiber insulation materials are used in numerous applications (e.g. aerospace, fire protection, and military) for their stability and performance in extreme environments. However, the thermal properties of these materials have not been thoroughly characterized for many of the conditions that they will be exposed to, such as high temperatures, pressures, and alternate gaseous atmospheres. The resulting uncertainty in the material properties can complicate the design of systems using these materials. In this study, the thermal conductivity of two ceramic fiber insulations, Fiberfrax T-30LR laminate and 970-H paper, was measured as a function of atmospheric temperature and compression in an air environment using the transient plane source technique. Furthermore, a model is introduced to account for changes in thermal conductivity with temperature, compression, and ambient gas. The model was tuned to the collected experimental data and results are compared. The tuned model is also compared to published data sets taken in argon, helium, and hydrogen environments and agreement is discussed.
Abstract not provided.
Abstract not provided.
Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.
Abstract not provided.
Journal of Power Sources
The transient transport of electrolytes in thermally-activated batteries is studied using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure of the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10-1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.
Abstract not provided.
Journal of the Electrochemical Society
The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45-75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling of lithium cobalt oxide (LiCoO2 ) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30-40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Finally, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation - electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.