Geologic Disposal Safety Assessment Framework is a state-of-the-art simulation software toolkit for probabilistic post-closure performance assessment of systems for deep geologic disposal of nuclear waste developed by the United States Department of Energy. This paper presents a generic reference case and shows how it is being used to develop and demonstrate performance assessment methods within the Geologic Disposal Safety Assessment Framework that mitigate some of the challenges posed by high uncertainty and limited computational resources. Variance-based global sensitivity analysis is applied to assess the effects of spatial heterogeneity using graph-based summary measures for scalar and time-varying quantities of interest. Behavior of the system with respect to spatial heterogeneity is further investigated using ratios of water fluxes. This analysis shows that spatial heterogeneity is a dominant uncertainty in predictions of repository performance which can be identified in global sensitivity analysis using proxy variables derived from graph descriptions of discrete fracture networks. New quantities of interest defined using water fluxes proved useful for better understanding overall system behavior.
This report is the revised (Revision 8) Task F specification for DECOVALEX-2023. Task F is a comparison of the models and methods used in deep geologic repository performance assessment. The task proposes to develop a reference case for a mined repository in a fractured crystalline host rock and a reference case for a mined repository in a salt formation. Teams may choose to participate in the comparison for either or both of the reference cases. For each reference case, a common set of conceptual models and parameters describing features, events, and processes that impact performance will be given, and teams will be responsible for determining how best to implement and couple the models. The comparison will be conducted in stages, beginning with a comparison of key outputs of individual process models, followed by a comparison of a single deterministic simulation of the full reference case, and moving on to uncertainty propagation and uncertainty and sensitivity analysis. This report provides background information, a summary of the proposed reference cases, and a staged plan for the analysis.
Performance assessment (PA) of geologic radioactive waste repositories requires three-dimensional simulation of highly nonlinear, thermo-hydro-mechanical-chemical (THMC), multiphase flow and transport processes across many kilometers and over tens to hundreds of thousands of years. Integrating the effects of a near-field geomechanical process (i.e. buffer swelling) into coupled THC simulations through reduced-order modeling, rather than through fully coupled geomechanics, can reduce the dimensionality of the problem and improve computational efficiency. In this study, PFLOTRAN simulations model a single waste package in a shale host rock repository, where re-saturation of a bentonite buffer causes the buffer to swell and exert stress on a highly fractured disturbed rock zone (DRZ). Three types of stress-dependent permeability functions (exponential, modified cubic, and Two-part Hooke's law models) are implemented to describe mechanical characteristics of the system. Our modeling study suggests that compressing fractures reduces DRZ permeability, which could influence the rate of radionuclide transport and exchange with corrosive species in host rock groundwater that could accelerate waste package degradation. Less permeable shale host rock delays buffer swelling, consequently retarding DRZ permeability reduction as well as chemical transport within the barrier system.
In the planning for FY2020 in the U.S. DOE NE-81 Spent Fuel and Waste Science and Technology (SFWST) Campaign, the DOE requested development of a plan for activities in the Disposal Research (DR) Research and Development (R&D) over a five (5)-year period, and DOE requested periodic updates to this plan. The DR R&D 5-year plan was provided to the DOE based on the FY2020 priorities and program structure (Sassani et al., 2020) and represents a strategic guide to the work within the DR R&D technical areas (i.e., the Control Accounts), focusing on the highest priority technical thrusts. This FY2021 report is the first update to the DR R&D 5-year plan for the SFWST Campaign DR R&D activities. This 5-year plan will be a living document and is planned to be updated periodically to provide review of accomplishments and for prioritization changes based on aspects including mission progress, external technical work, and changes in SFWST Campaign objectives and/or funding levels (i.e., Program Direction). The updates to this 5-year plan will address the DR R&D that has been completed (accomplishments) and the additional knowledge gaps to be investigated, with any updates to the DR R&D priorities for the next stages of activities.
Swiler, Laura P.; Becker, Dirk-Alexander B.; Brooks, Dusty M.; Govaerts, Joan G.; Koskinen, Lasse K.; Plischke, Elmar P.; Röhlig, Klaus-Jürgen R.; Saveleva, Elena S.; Spiessl, Sabine M.; Stein, Emily S.; Svitelman, Valentina S.
Over the past four years, an informal working group has developed to investigate existing sensitivity analysis methods, examine new methods, and identify best practices. The focus is on the use of sensitivity analysis in case studies involving geologic disposal of spent nuclear fuel or nuclear waste. To examine ideas and have applicable test cases for comparison purposes, we have developed multiple case studies. Four of these case studies are presented in this report: the GRS clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater case. We present the different sensitivity analysis methods investigated by various groups, the results obtained by different groups and different implementations, and summarize our findings.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy Office of Nuclear Energy, Office of Spent Fuel and Waste Disposition (SFWD), has been conducting research and development on generic deep geologic disposal systems (i.e., geologic repositories). This report describes specific activities in the Fiscal Year (FY) 2021 associated with the Geologic Disposal Safety Assessment (GDSA) Repository Systems Analysis (RSA) work package within the SFWST Campaign. The overall objective of the GDSA RSA work package is to develop generic deep geologic repository concepts and system performance assessment (PA) models in several host-rock environments, and to simulate and analyze these generic repository concepts and models using the GDSA Framework toolkit, and other tools as needed.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling. These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) control account, which is charged with developing a geologic repository system modeling and analysis capability, and the associated software, GDSA Framework, for evaluating disposal system performance for nuclear waste in geologic media. GDSA Framework is supported by SFWST Campaign and its predecessor the Used Fuel Disposition (UFD) campaign. This report fulfills the GDSA Uncertainty and Sensitivity Analysis Methods work package (SF-21SN01030404) level 3 milestone, Uncertainty and Sensitivity Analysis Methods and Applications in GDSA Framework (FY2021) (M3SF-21SN010304042). It presents high level objectives and strategy for development of uncertainty and sensitivity analysis tools, demonstrates uncertainty quantification (UQ) and sensitivity analysis (SA) tools in GDSA Framework in FY21, and describes additional UQ/SA tools whose future implementation would enhance the UQ/SA capability of GDSA Framework. This work was closely coordinated with the other Sandia National Laboratory GDSA work packages: the GDSA Framework Development work package (SF-21SN01030405), the GDSA Repository Systems Analysis work package (SF-21SN01030406), and the GDSA PFLOTRAN Development work package (SF-21SN01030407). This report builds on developments reported in previous GDSA Framework milestones, particularly M3SF 20SN010304032.
Swiler, Laura P.; Brooks, Dusty M.; Stein, Emily S.; Röhlig, Klaus-Jürgen R.; Plischke, Elmar P.; Becker, Dirk-Alexander B.; Spiessl, Sabine M.; Koskinen, Lasse K.; Govaerts, Joan G.; Svitelman, Valentina S.; Saveleva., Elena Saveleva.
This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.
Disposal of large, heat-generating waste packages containing the equivalent of 21 pressurized water reactor (PWR) assemblies or more is among the disposal concepts under investigation for a future repository for spent nuclear fuel (SNF) in the United States. Without a long (>200 years) surface storage period, disposal of 21-PWR or larger waste packages (especially if they contain high-burnup fuel) would result in in-drift and near-field temperatures considerably higher than considered in previous generic reference cases that assume either 4-PWR or 12-PWR waste packages (Jové Colón et al. 2014; Mariner et al. 2015; 2017). Sevougian et al. (2019c) identified high-temperature process understanding as a key research and development (R&D) area for the Spent Fuel and Waste Science and Technology (SFWST) Campaign. A two-day workshop in February 2020 brought together campaign scientists with expertise in geology, geochemistry, geomechanics, engineered barriers, waste forms, and corrosion processes to begin integrated development of a high-temperature reference case for disposal of SNF in a mined repository in a shale host rock. Building on the progress made in the workshop, the study team further explored the concepts and processes needed to form the basis for a high-temperature shale repository reference case. The results are described in this report and summarized..
This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).
The safety case for deep borehole disposal of nuclear wastes contains a safety strategy, an assessment basis, and a safety assessment. The safety strategy includes strategies for management, siting and design, and assessment. The assessment basis considers site selection, pre-closure, and post-closure, which includes waste and engineered barriers, the geosphere/natural barriers, and the biosphere and surface environment. The safety assessment entails a pre-closure safety analysis, a post-closure performance assessment, and confidence enhancement analyses. This paper outlines the assessment basis and safety assessment aspects of a deep borehole disposal safety case. The safety case presented here is specific to deep borehole disposal of Cs and Sr capsules, but is generally applicable to other waste forms, such as spent nuclear fuel. The safety assessments for pre-closure and post-closure are briefly summarized from other sources; key issues for confidence enhancement are described in greater detail. These confidence enhancement analyses require building the technical basis for geologically old, reducing, highly saline brines at the depth of waste emplacement, and using reactive-transport codes to predict their movement in post-closure. The development and emplacement of borehole seals above the waste emplacement zone is also important to confidence enhancement.
This report describes the current status of the safety case for the deep borehole disposal (DBD) concept. It builds on the safety case presented in Freeze et al. (2016), presenting new information and identifying additional information needs for specific safety case elements. At this preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. Updated information is provided for the following safety case elements: * pre-closure basis and safety analysis, * post-closure basis and performance assessment, and * confidence enhancement. This research was performed as part of the deep borehole field test (DBFT). Based on revised U.S. Department of Energy (DOE) priorities in mid-2017, the DBFT and other research related to a DBD option was discontinued; ongoing work and documentation were closed out by the end of fiscal year (FY) 2017. This report was initiated as part of the DBFT and documented as an incomplete draft at the end of FY 2017. The report was finalized by Sandia National Laboratories in FY2018 without DOE funding, subsequent to the termination of the DBFT, and published in FY2019. iii
Post-closure performance assessment (PA) calculations suggest that deep borehole disposal of cesium (Cs)/strontium (Sr) capsules, a U.S. Department of Energy (DOE) waste form (WF), is safe, resulting in no releases to the biosphere over 10,000,000 years when the waste is placed in a 3-5 km deep waste disposal zone. The same is true when a hypothetical breach of a stuck waste package (WP) is assumed to occur at much shallower depths penetrated by through-going fractures. Cs and Sr retardation in the host rock is a key control over movement. Calculated borehole performance would be even stronger if credit was taken for the presence of the WP.
PFLOTRAN is well-established in single-phase reactive transport problems, and current research is expanding its visibility and capability in two-phase subsurface problems. A critical part of the development of simulation software is quality assurance (QA). The purpose of the present work is QA testing to verify the correct implementation and accuracy of two-phase flow models in PFLOTRAN. An important early step in QA is to verify the code against exact solutions from the literature. In this work a series of QA tests on models that have known analytical solutions are conducted using PFLOTRAN. In each case the simulated saturation profile is rigorously shown to converge to the exact analytical solution. These results verify the accuracy of PFLOTRAN for use in a wide variety of two-phase modelling problems with a high degree of nonlinearity in the interaction between phase behavior and fluid flow.
Probabilistic simulations of the post-closure performance of a generic deep geologic repository for commercial spent nuclear fuel in shale host rock provide a test case for comparing sensitivity analysis methods available in Geologic Disposal Safety Assessment (GDSA) Framework, the U.S. Department of Energy's state-of-the-art toolkit for repository performance assessment. Simulations assume a thick low-permeability shale with aquifers (potential paths to the biosphere) above and below the host rock. Multi-physics simulations on the 7-million-cell grid are run in a high-performance computing environment with PFLOTRAN. Epistemic uncertain inputs include properties of the engineered and natural systems. The output variables of interest, maximum I-129 concentrations (independent of time) at observation points in the aquifers, vary over several orders of magnitude. Variance-based global sensitivity analyses (i.e., calculations of sensitivity indices) conducted with Dakota use polynomial chaos expansion (PCE) and Gaussian process (GP) surrogate models. Results of analyses conducted with raw output concentrations and with log-transformed output concentrations are compared. Using log-transformed concentrations results in larger sensitivity indices for more influential input variables, smaller sensitivity indices for less influential input variables, and more consistent values for sensitivity indices between methods (PCE and GP) and between analyses repeated with samples of different sizes.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Depat ment of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes specific GDSA activities in fiscal year 2018 (FY 2018) toward the development of GDSA Framework, an enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. GDSA Framework employs the PFLOTRAN thermal-hydrologic-chemical multiphysics code (Hammond et al. 2011a; Lichtner and Hammond 2012) and the Dakota uncertainty sampling and propagation code (Adams et al. 2012; Adams et al. 2013). Each code is designed for massivelyparallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.
U.S. knowledge in deep geologic disposal in crystalline rock is advanced and growing. U.S. status and recent advances related to crystalline rock are discussed throughout this report. Brief discussions of the history of U.S. disposal R&D and the accumulating U.S. waste inventory are presented in Sections 3.x.2 and 3.x.3. The U.S. repository concept for crystalline rock is presented in Section 3.x.4. In Chapters 4 and 5, relevant U.S. research related to site characterization and repository safety functions are discussed. U.S. capabilities for modelling fractured crystalline rock and performing probabilistic total system performance assessments are presented in Chapter 6.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).
This report provides an update to Sassani et al. (2016) and includes: (1) an updated set of inputs (Sections 2.3) on various additional waste forms (WF) covering both DOE-managed spent nuclear fuel (SNF) and DOE-managed (as) high-level waste (HLW) for use in the inventory represented in the geologic disposal safety analyses (GDSA); (2) summaries of evaluations initiated to refine specific characteristics of particular WF for future use (Section 2.4); (3) updated development status of the Online Waste Library (OWL) database (Section 3.1.2) and an updated user guide to OWL (Section 3.1.3); and (4) status updates (Section 3.2) for the OWL inventory content, data entry checking process, and external OWL BETA testing initiated in fiscal year 2017.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
This paper considers concepts for disposal of canistered high-level (radioactive) waste (HLW) in large diameter deep boreholes. Vitrified HLW pour canisters are limited in diameter to promote glass cooling, and constitute a large potential application for borehole disposal where diameter is constrained. The objective for disposal would be waste packages with diameter of 22 to 29 inches, which could encompass all existing and projected HLW glass inventory in the United States. Deep, large diameter boreholes of the sizes needed have been successfully drilled, and we identify other potentially effective designs. The depth of disposal boreholes would be site-specific, and need not be as deep as the 5 km being investigated in the Deep Borehole Field Test. For example, a 0.91 m (36 inch) diameter borehole drilled to 3 km could be used for disposal from 2.5 to 3 km (8, 200 to 9, 840 ft). The engineering feasibility of such boreholes is greater today than was concluded by earlier studies done in Sweden and the United States. Moreover, the disposal concept and generic safety case have evolved to a point where borehole construction need not be as elaborate as previously assumed. Each borehole in the example could accommodate approximately 100 waste packages containing canisters of vitrified HLW. Emplacement of the packages would be through a 32-inch (0.81 m) guidance casing, installed in two sections to reduce hoisting loads, and forming a continuous pathway from the surface to total depth. Above the disposal zone would be a nominal 1 km (3, 280-ft) seal interval, similar to previously published concepts. Following those concept studies, the seal system would consist of alternating lifts of swelling clay, backfill and cement. Above the seal zone the borehole would be plugged with cement in the conventional manner for oil-and-gas wells. The function of seals in deep borehole disposal is to maintain the pre-drilling hydrologic regime in the crystalline basement, where groundwater is increasingly saline, stagnant, and ancient. Seals would resist fluid movement and radionuclide transport during an early period of waste heating, but after cooling little fluid movement is expected. Thus, the function of seals could be less important with HLW that has low heat output, and sealing requirements could be limited. The safety case for deep borehole disposal relies on the prevalence of groundwater that is increasingly saline with depth, stagnant, and ancient, in crystalline basement rock that has low bulk permeability and is isolated from surface processes. The minimum depth for disposal depends on sitespecific factors, and may be less than the 2.5 km example. Rough-order-of-magnitude cost estimates show that deep borehole disposal of HLW would be cost-competitive with the lowest cost mine repository options. Thinner overburden, and shallower development of conditions favorable to waste isolation, could make drilling of large-diameter disposal boreholes even more cost effective. The dimensions of the disposal zone and seal zone would be site specific, and would be adjusted to ensure that both are situated in unaltered crystalline basement rock.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
An important feature required in all geological disposal system modeling is proper representation of waste package degradation and waste form dissolution. These processes are often treated as batch operations, meaning they are zero-dimensional. However, waste package canister degradation or waste form dissolution are affected by near-field conditions, and thus they must be coupled to the computational domain through the exchange of information on local conditions. Accurate waste package and waste form degradation behavior is essential because processes occurring at the batch level also affect far field conditions through heat and mass transport by advection or diffusion. Presented here is the development and performance of the Waste Form Process Model, an integrated module for waste package canister degradation and waste form dissolution developed by Sandia National Laboratories within PFLOTRAN. PFLOTRAN is an open source, massively parallel subsurface simulator for multiphase, multicomponent, and multiscale reactive flow and transport processes in porous media. PFLOTRAN is used to model geologic disposal systems for the Spent Fuel and Waste Science and Technology (SFWST) Campaign under the Spent Fuel and Waste Disposition Program of the U.S. Department of Energy (DOE) Office of Nuclear Energy.
ANS IHLRWM 2017 - 16th International High-Level Radioactive Waste Management Conference: Creating a Safe and Secure Energy Future for Generations to Come - Driving Toward Long-Term Storage and Disposal
Numerical simulation of a repository for heatgenerating nuclear waste in fractured crystalline rock requires a method for simulating coupled heat and fluid flow and reactive radionuclide transport in both porous media (bentonite buffer, surface sediments) and fractured rock (the repository host rock). Discrete fracture networks (DFNs), networks of two-dimensional planes distributed in a three-dimensional domain, are commonly used to simulate isothermal fluid flow and particle transport in fractures, but unless coupled to a continuum, are incapable of simulating heat conduction through the rock matrix, and therefore incapable of capturing the effects of thermally driven fluid fluxes or of coupling chemical processes to thermal processes. We present a method for mapping a stochastically generated DFN to a porous medium domain that allows representation of porous and fractured media in the same domain, captures the behavior of radionuclide transport in fractured rock, and allows simulation of coupled heat and fluid flow including heat conduction through the matrix of the fractured rock. We apply the method within Sandia's Geologic Disposal Safety Assessment (GDSA) framework to conduct a post-closure performance assessment (PA) of a generic repository for commercial spent nuclear fuel in crystalline rock. The three-dimensional, kilometer-scale model domain contains approximately 4.5 million grid cells; grid refinement captures the detail of 3, 360 individual waste packages in 42 disposal drifts. Coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel multiphase flow and reactive transport code. Simulations of multiple fracture realizations were run to 1 million years, and indicate that, because of the channeled nature of fracture flow, thermally-driven fluid fluxes associated with peak repository temperatures may be a primary means of radionuclide transport out of the saturated repository. The channeled nature of fracture flow gives rise to unique challenges in uncertainty and sensitivity quantification, as radionuclide concentrations at any given location outside the repository depend heavily on the distribution of fractures in the domain.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.
This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.
The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin). A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.
The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.
Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).
This report describes specific GDSA activities in fiscal year 2015 (FY2015) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code (Hammond et al., 2011) and the Dakota uncertainty sampling and propagation code (Adams et al., 2013). Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through the engineered barriers and natural geologic barriers to a well location in an overlying or underlying aquifer. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.
Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.