Publications

39 Results
Skip to search filters

High-efficiency thermophotovoltaic energy conversion enabled by a metamaterial selective emitter

Optica

Woolf, David N.; Kadlec, Emil A.; Bethke, Donald T.; Grine, Albert D.; Nogan, John N.; Cederberg, Jeffrey G.; Burckel, D.B.; Luk, Ting S.; Shaner, Eric A.; Hensley, Joel M.

Thermophotovoltaics (TPV) is the process by which photons radiated from a thermal emitter are converted into electrical power via a photovoltaic cell. Selective thermal emitters that can survive at temperatures at or above ∼1000°C have the potential to greatly improve the efficiency of TPV energy conversion by restricting the emission of photons with energies below the photovoltaic (PV) cell bandgap energy. In this work, we demonstrated TPV energy conversion using a high-temperature selective emitter, dielectric filter, and 0.6 eV In0.68 Ga0.32 As photovoltaic cell. We fabricated a passivated platinum and alumina frequency-selective surface by conventional stepper lithography. To our knowledge, this is the first demonstration of TPV energy conversion using a metamaterial emitter. The emitter was heated to >1000°C, and converted electrical power was measured. After accounting for geometry, we demonstrated a thermal-to-electrical power conversion efficiency of 24.1 0.9% at 1055°C. We separately modeled our system consisting of a selective emitter, dielectric filter, and PV cell and found agreement with our measured efficiency and power to within 1%. Our results indicate that high-efficiency TPV generators are possible and are candidates for remote power generation, combined heat and power, and heat-scavenging applications.

More Details

Integrating Resonant Structures with IR Detectors

Goldflam, Michael G.; Goldflam, Michael G.; Anderson, Evan M.; Anderson, Evan M.; Campione, Salvatore; Campione, Salvatore; Coon, Wesley T.; Coon, Wesley T.; Davids, Paul D.; Davids, Paul D.; Fortune, Torben R.; Fortune, Torben R.; Hawkins, Samuel D.; Hawkins, Samuel D.; Kadlec, Clark N.; Kadlec, Clark N.; Kadlec, Emil A.; Kadlec, Emil A.; Kim, Jin K.; Kim, Jin K.; Klem, John F.; Klem, John F.; Shaner, Eric A.; Shaner, Eric A.; Sinclair, Michael B.; Sinclair, Michael B.; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Warne, Larry K.; Warne, Larry K.; Wendt, J.R.; Wendt, J.R.; Beechem, Thomas E.; Beechem, Thomas E.; Howell, Stephen W.; Howell, Stephen W.; McDonald, Anthony E.; McDonald, Anthony E.; Ruiz, Isaac R.; Ruiz, Isaac R.

Abstract not provided.

Vacuum radiometry of an infrared nanoantenna-coupled tunnel diode rectenna

International Conference on Optical MEMS and Nanophotonics

Davids, Paul D.; Kadlec, Emil A.; Shank, Joshua S.; Peters, D.W.; Howell, Stephen W.

We examine the vacuum infrared photoresponse of a large-area nanoantenna-coupled tunnel diode rectenna resulting from thermal radiation from a temperature controlled heater. The measured infrared photocurrent is obtained as a function of the source temperature, sample distance and view factor. Far-field radiation power conversion is examined using standard radiometric techniques and correlated with the rectified current response.

More Details

Resonantly enhanced infrared detectors based on type-II superlattice absorbers

Goldflam, Michael G.; Goldflam, Michael G.; Campione, Salvatore; Campione, Salvatore; Kadlec, Emil A.; Kadlec, Emil A.; Hawkins, Samuel D.; Hawkins, Samuel D.; Coon, Wesley T.; Coon, Wesley T.; Fortune, Torben R.; Fortune, Torben R.; Parameswaran, Sivasubramanian P.; Parameswaran, Sivasubramanian P.; Keeler, Gordon A.; Keeler, Gordon A.; Klem, John F.; Klem, John F.; Tauke-Pedretti, Anna; Tauke-Pedretti, Anna; Shaner, Eric A.; Shaner, Eric A.; Davids, Paul D.; Davids, Paul D.; Warne, Larry K.; Warne, Larry K.; Wendt, J.R.; Wendt, J.R.; Kim, Jin K.; Kim, Jin K.; Peters, D.W.; Peters, D.W.

Abstract not provided.

Next-generation infrared focal plane arrays for high-responsivity low-noise applications

IEEE Aerospace Conference Proceedings

Goldflam, Michael G.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian P.; Tauke-Pedretti, Anna; Warne, Larry K.; Peters, D.W.; Campione, Salvatore; Coon, W.T.; Keeler, Gordon A.; Shaner, Eric A.; Wendt, J.R.; Kadlec, Emil A.; Fortune, Torben R.; Klem, John F.; Davids, Paul D.; Kim, Jin K.

High-quality infrared focal plane arrays (FPAs) are used in many satellite, astronomical, and terrestrial applications. These applications require highly-sensitive, low-noise FPAs, and therefore do not benefit from advances made in low-cost thermal imagers where reducing cost and enabling high-temperature operation drive device development. Infrared detectors used in FPAs have been made for decades from alloys of mercury cadmium telluride (MCT). These infrared detectors are nearing the believed limit of their performance. This limit, known in the infrared detector community as Rule 07, dictates the dark current floor for MCT detectors, in their traditional architecture, for a given temperature and cutoff wavelength. To overcome the bounds imposed by Rule 07, many groups are working on detector compounds other than MCT. We focus on detectors employing III-V-based gallium-free InAsSb superlattice active regions while also changing the basic architecture of the pixel to improve signal-to-noise. Our architecture relies on a resonant, metallic, subwavelength nanoantenna patterned on the absorber surface, in combination with a Fabry-Pérot cavity, to couple the incoming radiation into tightly confined modes near the nanoantenna. This confinement of the incident energy in a thin layer allows us to greatly reduce the volume of the absorbing layer to a fraction of the free-space wavelength, yielding a corresponding reduction in dark current from spontaneously generated electron-hole pairs in the absorber material. This architecture is detector material agnostic and could be applied to MCT detector structures as well, although we focus on using superlattice antimonide-based detector materials. This detector concept has been applied to both mid-wave (3-5 μm) and longwave (8-12 μm) infrared detectors and absorbers. Here we examine long-wave devices, as these detectors currently have a larger gap between desired device performance and that of currently existing detectors. The measured structures show an external quantum efficiency exceeding 50%. We present a comparison of the modeled and measured photoresponse of these detectors and compare these detectors to currently available commercial detectors using relevant metrics such as external quantum efficiency. We also discuss modeling of crosstalk between adjacent pixels and its influence on the potential for a dual-wavelength detector. Finally, we evaluate potential advances in these detectors that may occur in the near future.

More Details

Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional Nanoantenna-Coupled Tunnel Diode

Physical Review Applied

Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew L.; Peters, D.W.; Davids, Paul D.

The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

More Details

Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

Applied Physics Letters

Goldflam, Michael G.; Kadlec, Emil A.; Olson, B.V.; Klem, John F.; Hawkins, Samuel D.; Parameswaran, Sivasubramanian P.; Coon, W.T.; Keeler, Gordon A.; Fortune, Torben R.; Tauke-Pedretti, Anna; Wendt, J.R.; Shaner, Eric A.; Davids, Paul D.; Kim, Jin K.; Peters, D.W.

We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

More Details

Material Characterization methods in InAs/InAsSb Type-II superlattices

Kadlec, Emil A.

This document presents a thesis proposal with three topics. It describes an in-depth comparison of lifetime measurement methods for material characterization of InAs/InAsSb type-II superlattices; develops a characterization method based on the 2nd harmonic of a modulated carrier density; and relates lifetime measurements to device performance.

More Details

Minority carrier lifetimes in very long-wave infrared InAs/GaInSb superlattices

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Haugan, Heather J.; Brown, Gail J.; Olson, Benjamin V.; Kadlec, Emil A.; Kim, Jin K.; Shaner, Eric A.

Significantly improved carrier lifetimes in very-long wave infrared InAs/GaInSb superlattice (SL) absorbers are demonstrated by using time-resolved microwave reflectance (TMR) measurements. A nominal 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb SL structure that produces an approximately 25 μm response at 10 K has a minority carrier lifetime of 140 ± 20 ns at 18 K, which is markedly long for SL absorber with such a narrow bandgap. This improvement is attributed to the strain-engineered ternary design. Such SL employs a shorter period with reduced gallium in order to achieve good optical absorption and epitaxial advantages, which ultimately leads to the improvements in the minority carrier lifetime by reducing Shockley-Read-Hall (SRH) defects. By analyzing the temperature-dependence of TMR decay data, the recombination mechanisms and trap states that currently limit the performance of this SL absorber have been identified. The results show a general decrease in the long-decay lifetime component, which is dominated by the SRH recombination at temperature below ∼30 K, and by Auger recombination at temperatures above ∼45 K.

More Details

Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices

Applied Physics Letters

Olson, B.V.; Grein, C.H.; Kim, Jin K.; Kadlec, Emil A.; Klem, John F.; Hawkins, Samuel D.; Shaner, Eric A.

The Auger lifetime is a critical intrinsic parameter for infrared photodetectors as it determines the longest potential minority carrier lifetime and consequently the fundamental limitations to their performance. Here, Auger recombination is characterized in a long-wave infrared InAs/InAsSb type-II superlattice. Auger coefficients as small as 7.1 × 10 - 26 cm6/s are experimentally measured using carrier lifetime data at temperatures in the range of 20 K-80 K. The data are compared to Auger-1 coefficients predicted using a 14-band K · p electronic structure model and to coefficients calculated for HgCdTe of the same bandgap. The experimental superlattice Auger coefficients are found to be an order-of-magnitude smaller than HgCdTe.

More Details

Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors

Applied Physics Letters

Olson, B.V.; Kim, Jin K.; Kadlec, Emil A.; Klem, John F.; Hawkins, Samuel D.; Leonhardt, Darin L.; Coon, W.T.; Fortune, Torben R.; Cavaliere, Melissa A.; Tauke-Pedretti, Anna; Shaner, Eric A.

Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F1F2|=0.292. The measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. Excellent agreement is found between the two, highlighting the important relationship between lifetimes and diffusion currents in nBn photodetectors.

More Details

Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices

Applied Physics Letters

Haugan, H.J.; Brown, G.J.; Olson, B.V.; Kadlec, Emil A.; Kim, Jin K.; Shaner, Eric A.

Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0Å InAs/21.5Å Ga0.75In0.25Sb, corresponding to a bandgap of ∼50meV, is found to have a minority carrier lifetime of 140±20ns at ∼18K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. This enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombination centers.

More Details

Phased-array sources based on nonlinear metamaterial nanocavities

Nature Communications

Wolf, Omri W.; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng L.; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal B.

Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

More Details

Intensity- and Temperature-Dependent Carrier Recombination in InAs/InAs1-x S bx Type-II Superlattices

Physical Review Applied

Olson, B.V.; Kadlec, Emil A.; Kim, Jin K.; Klem, John F.; Hawkins, Samuel D.; Shaner, Eric A.; Flatté, M.E.

Time-resolved measurements of carrier recombination are reported for a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) as a function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. These results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.

More Details

Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors

Applied Physics Letters

Zuo, Daniel; Liu, Runyu; Wasserman, Daniel; Mabon, James; He, Zhao Y.; Liu, Shi; Zhang, Yong H.; Kadlec, Emil A.; Olson, Benjamin V.; Shaner, Eric A.

We present an extensive characterization of the minority carrier transport properties in an nBn mid-wave infrared detector incorporating a Ga-free InAs/InAsSb type-II superlattice as the absorbing region. Using a modified electron beam induced current technique in conjunction with time-resolved photoluminescence, we were able to determine several important transport parameters of the absorber region in the device, which uses a barrier layer to reduce dark current. For a device at liquid He temperatures, we report a minority carrier diffusion length of 750 nm and a minority carrier lifetime of 200 ns, with a vertical diffusivity of 3 × 10-2 cm2/s. We also report on the device's optical response characteristics at 78 K.

More Details

Room temperature detector array technology for the terahertz to far-infrared

Shaner, Eric A.; Wright, Jeremy B.; Kadlec, Emil A.; Lentine, Anthony L.; Rakich, Peter T.; Camacho, Ryan C.

Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.

More Details
39 Results
39 Results