Publications

Results 1–25 of 32
Skip to search filters

Synthesis and characterization of supported ferrites for thermochemical CO 2 splitting using concentrated solar energy

ACS National Meeting Book of Abstracts

Ambrosini, Andrea; Coker, Eric N.; Rodriguez, Marko A.; Ohlhausen, J.A.; Miller, James E.; Stechel-Speicher, Ellen B.

The Sunshine to Petrol effort at Sandia National Laboratories aims to convert CO 2 and water to liquid hydrocarbon fuel precursors using concentrated solar energy with redox-active metal oxide systems, such as ferrites: Fe 3O 4→3FeO+ 0.5O 2 (>1350°C) 3FeO + CO 2→Fe 3O 4 + CO (<1200°C). However, the ferrite materials are not repeatedly reactive on their own and require a support, such as yttria-stabilized zirconia (YSZ). The ferrite-support interaction is not well defined, as there has been little fundamental characterization of these oxides at the high temperatures and conditions present in these cycles. We have investigated the microstructure, structure-property relationships, and the role of the support on redox behavior of the ferrite composites. In-situ capabilities to elucidate chemical reactions under operating conditions have been developed. The synthesis, structural characterization (room and high- temperature x-ray diffraction, secondary ion mass spectroscopy, scanning electron microscopy), and thermogravimetric analysis of YSZ-supported ferrites will be discussed.

More Details

Methanol production from CO 2 using solar-thermal energy: Process development and techno-economic analysis

Energy and Environmental Science

Kim, Jiyong; Henao, Carlos A.; Johnson, Terry A.; Dedrick, Daniel E.; Miller, James E.; Stechel-Speicher, Ellen B.; Maravelias, Christos T.

We describe a novel solar-based process for the production of methanol from carbon dioxide and water. The system utilizes concentrated solar energy in a thermochemical reactor to reenergize CO 2 into CO and then water gas shift (WGS) to produce syngas (a mixture of CO and H 2) to feed a methanol synthesis reactor. Aside from the thermochemical reactor, which is currently under development, the full system is based on well-established industrial processes and component designs. This work presents an initial assessment of energy efficiency and economic feasibility of this baseline configuration for an industrial-scale methanol plant. Using detailed sensitivity calculations, we determined that a break-even price of the methanol produced using this approach would be 1.22 USD/kg; which while higher than current market prices is comparable to other renewable-resource-based alternatives. We also determined that if solar power is the sole primary energy source, then an overall process energy efficiency (solar-to-fuel) of 7.1% could be achieved, assuming the solar collector, solar thermochemical reactor sub-system operates at 20% sunlight to chemical energy efficiency. This 7.1% system efficiency is significantly higher than can currently be achieved with photosynthesis-based processes, and illustrates the potential for solar thermochemical based strategies to overcome the resource limitations that arise for low-efficiency approaches. Importantly, the analysis here identifies the primary economic drivers as the high capital investment associated with the solar concentrator/reactor sub-system, and the high utility consumption for CO/CO 2 separation. The solar concentrator/reactor sub-system accounts for more than 90% of the capital expenditure. A life cycle assessment verifies the opportunity for significant improvements over the conventional process for manufacturing methanol from natural gas in global warming potential, acidification potential and non-renewable primary energy requirement provided balance of plant utilities for the solar thermal process are also from renewable (solar) resources. The analysis indicates that a solar-thermochemical pathway to fuels has significant potential, and points towards future research opportunities to increase efficiency, reduce balance of plant utilities, and reduce cost from this baseline. Particularly, it is evident that there is much room for improvement in the development of a less expensive solar concentrator/reactor sub-system; an opportunity that will benefit from the increasing deployment of concentrated solar power (electricity). In addition, significant advances are achievable through improved separations, combined CO 2 and H 2O splitting, different end products, and greater process integration and distribution. The baseline investigation here establishes a methodology for identifying opportunities, comparison, and assessment of impact on the efficiency, lifecycle impact, and economics for advanced system designs. © 2011 The Royal Society of Chemistry.

More Details

Process development and techno-economic analysis of a novel process for MeOH production from CO2 using solar-thermal energy

Dedrick, Daniel E.; Stechel-Speicher, Ellen B.

Mitigating and overcoming environmental problems brought about by the current worldwide fossil fuel-based energy infrastructure requires the creation of innovative alternatives. In particular, such alternatives must actively contribute to the reduction of carbon emissions via carbon recycling and a shift to the use of renewable sources of energy. Carbon neutral transformation of biomass to liquid fuels is one of such alternatives, but it is limited by the inherently low energy efficiency of photosynthesis with regard to the net production of biomass. Researchers have thus been looking for alternative, energy-efficient chemical routes inspired in the biological transformation of solar power, CO2 and H2O into useful chemicals; specifically, liquid fuels. Methanol has been the focus of a fair number of publications for its versatility as a fuel, and its use as an intermediate chemical in the synthesis of many compounds. In some of these studies, (e.g. Joo et al., (2004), Mignard and Pritchard (2006), Galindo and Badr (2007)) CO2 and renewable H2 (e.g. electrolytic H2) are considered as the raw materials for the production of methanol and other liquid fuels. Several basic PFD diagrams have been proposed. One of the most promising is the so called CAMERE process (Joo et al., 1999 ). In this process, carbon dioxide and renewable hydrogen are fed to a first reactor and transformed according to: H2 + CO2 <=> H2O + CO Reverse Water Gas Shift (RWGS) After eliminating the produced water the resulting H2/CO2/CO mixture is then feed to a second reactor where it is converted to methanol according to: CO2 + 3.H2 <=> CH3OH + H2O Methanol Synthesis (MS) CO + H2O <=> CO2 + H2 Water Gas Shift (WGS) The approach here is to produce enough CO to eliminate, via WGS, the water produced by MS. This is beneficial since water has been proven to block active sites in the MS catalyst. In this work a different process alternative is presented: One that combines the CO2 recycling of the CAMERE process and the use of solar energy implicit in some of the biomass-based process, but in this case with the potential high energy efficiency of thermo-chemical transformations.

More Details

Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications

Staiger, Chad S.; Lambert, Timothy N.; Hall, Aaron C.; Bencomo, Marlene B.; Stechel-Speicher, Ellen B.

Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

More Details

Thermokinetic/mass-transfer analysis of carbon capture for reuse/sequestration

Brady, Patrick V.; Luketa, Anay L.; Stechel-Speicher, Ellen B.

Effective capture of atmospheric carbon is a key bottleneck preventing non bio-based, carbon-neutral production of synthetic liquid hydrocarbon fuels using CO{sub 2} as the carbon feedstock. Here we outline the boundary conditions of atmospheric carbon capture for recycle to liquid hydrocarbon fuels production and re-use options and we also identify the technical advances that must be made for such a process to become technically and commercially viable at scale. While conversion of atmospheric CO{sub 2} into a pure feedstock for hydrocarbon fuels synthesis is presently feasible at the bench-scale - albeit at high cost energetically and economically - the methods and materials needed to concentrate large amounts of CO{sub 2} at low cost and high efficiency remain technically immature. Industrial-scale capture must entail: (1) Processing of large volumes of air through an effective CO{sub 2} capture media and (2) Efficient separation of CO{sub 2} from the processed air flow into a pure stream of CO{sub 2}.

More Details

Solid oxide electrochemical reactor science

Stechel-Speicher, Ellen B.

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

More Details

Synthesis and characterization of metal oxide materials for thermochemical CO2 splitting using concentrated solar energy

Stechel-Speicher, Ellen B.; Coker, Eric N.; Rodriguez, Marko A.

The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

More Details

Synthesis and characterization of ferrite materials for thermochemical CO2 splitting using concentrated solar energy

Stechel-Speicher, Ellen B.; Coker, Eric N.; Rodriguez, Marko A.

The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in these cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.

More Details
Results 1–25 of 32
Results 1–25 of 32