Publications

Results 1–25 of 65
Skip to search filters

Combined thermographic phosphor and digital image correlation (TP + DIC) for simultaneous temperature and strain measurements

Strain

Jones, Elizabeth M.; Jones, Amanda; Winters, Caroline W.

Thermographic phosphors (TP) are combined with stereo digital image correlation (DIC) in a novel diagnostic, TP + DIC, to measure full-field surface strains and temperatures simultaneously. The TP + DIC method is presented, including corrections for nonlinear CMOS camera detectors and generation of pixel-wise calibration curves to relate the known temperature to the ratio of pixel intensities between two distinct wavelength bands. Additionally, DIC is employed not only for strain measurements but also for accurate image registration between the two cameras for the two-colour ratio method approach of phosphoric thermography. TP + DIC is applied to characterize the thermo-mechanical response of 304L stainless steel dog bones during tensile testing at different strain rates. The dog bones are patterned for DIC with Mg3F2GeO4:Mn (MFG) via aerosol deposition through a shadow mask. Temperatures up to 425°K (150°C) and strains up to 1.0 mm/mm are measured in the localized necking region, with conservative noise levels of 10°K and 0.01 mm/mm or less. Finally, TP + DIC is compared to the more established method of combining infrared (IR) thermography with DIC (IR + DIC), with results agreeing favourably. Three topics of continued research are identified, including cracking of the aerosol-deposited phosphor DIC features, incomplete illumination for pixels on the border of the phosphor features, and phosphor emission evolution as a function of applied substrate strain. This work demonstrates the combination of phosphor thermography and DIC and lays the foundation for further development of TP + DIC for testing in combined thermo-mechancial environments.

More Details

High-Speed X-Ray Stereo Digital Image Correlation in a Shock Tube

Experimental Techniques

James, J.W.; Jones, Elizabeth M.; Quintana, Enrico C.; Lynch, Kyle P.; Halls, B.R.; Wagner, Justin W.

X-ray stereo digital image correlation (DIC) measurements were performed at 10 kHz on the internal surface of a jointed structure in a shock tube at a shock Mach number of 1.42 and compared with optical stereo DIC measurements on the outer, visible surface of the structure. The shock tube environment introduces temperature and density gradients in the gas through which the structure was imaged, resulting in spatial and temporal index of refraction variations. These variations cause bias errors in optical DIC measurements due to beam-steering but have minimal influence on x-ray DIC measurements. These results demonstrate the utility of time-resolved x-ray DIC measurements in complicated environments where optical measurements suffer severe errors and/or are precluded by lack of optical access.

More Details

Advances in phosphor two-color ratio method thermography for full-field surface temperature measurements

Measurement Science and Technology

Jones, Elizabeth M.; Jones, Amanda; Hoffmeister, Kathryn N.; Winters, Caroline W.

Thermographic phosphors can be employed for optical sensing of surface, gas phase, and bulk material temperatures through different strategies including the time-decay method, time-integrated method, and frequency-domain method. We focus on the time-integrated method, also known as the ratio method, as it can be more practical in many situations. This work advances the ratio method using two machine vision cameras with CMOS detectors for full-field temperature measurements of a solid surface. A phosphor calibration coupon is fabricated using aerosol deposition and employed for in situ determination of the temperature-versus-intensity ratio relationship. Algorithms from digital image correlation are employed to determine the stereoscopic imaging system intrinsic and extrinsic parameters, and accurately register material points on the sample to subpixel locations in each image with 0.07 px or better accuracy. Detector nonlinearity is carefully characterized and corrected. Temperature-dependent, spatial non-uniformity of the full-field intensity ratio-posited to be caused by a blue-shift effect of the bandpass filter for non-collimated light and/or a wavelength-dependent transmission efficiency of the lens-is assessed and treated for cases where a standard flat-field correction fails to correct the non-uniformity. In sum, pixel-wise calibration curves relating the computed intensity ratio to temperature in the range of T = 300-430 K are generated, with an embedded error of less than 3 K. This work offers a full calibration methodology and several improvements on two-color phosphor thermography, opening the door for full-field temperature measurements in dynamic tests with deforming test articles.

More Details

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel R.; Jones, Elizabeth M.; Munz, Elise D.; Reu, Phillip L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details

Comprehensive Material Characterization and Simultaneous Model Calibration for Improved Computational Simulation Credibility

Seidl, Daniel T.; Jones, Elizabeth M.; Lester, Brian T.

Computational simulation is increasingly relied upon for high-consequence engineering decisions, and a foundational element to solid mechanics simulations is a credible material model. Our ultimate vision is to interlace material characterization and model calibration in a real-time feedback loop, where the current model calibration results will drive the experiment to load regimes that add the most useful information to reduce parameter uncertainty. The current work investigated one key step to this Interlaced Characterization and Calibration (ICC) paradigm, using a finite load-path tree to incorporate history/path dependency of nonlinear material models into a network of surrogate models that replace computationally-expensive finite-element analyses. Our reference simulation was an elastoplastic material point subject to biaxial deformation with a Hill anisotropic yield criterion. Training data was generated using either a space-filling or adaptive sampling method, and surrogates were built using either Gaussian process or polynomial chaos expansion methods. Surrogate error was evaluated to be on the order of 10⁻5 and 10⁻3 percent for the space-filling and adaptive sampling training data, respectively. Direct Bayesian inference was performed with the surrogate network and with the reference material point simulator, and results agreed to within 3 significant figures for the mean parameter values, with a reduction in computational cost over 5 orders of magnitude. These results bought down risk regarding the surrogate network and facilitated a successful FY22-24 full LDRD proposal to research and develop the complete ICC paradigm.

More Details

Anisotropic plasticity model forms for extruded Al 7079: Part II, validation

International Journal of Solids and Structures

Jones, Elizabeth M.; Corona, Edmundo C.; Jones, Amanda; Scherzinger, William M.; Kramer, Sharlotte L.

This is the second part of a two-part contribution on modeling of the anisotropic elastic-plastic response of aluminum 7079 from an extruded tube. Part I focused on calibrating a suite of yield and hardening functions from tension test data; Part II concentrates on evaluating those calibrations. Here, a rectangular validation specimen with a blind hole was designed to provide heterogeneous strain fields that exercise the material anisotropy, while at the same time avoiding strain concentrations near sample edges where Digital Image Correlation (DIC) measurements are difficult to make. Specimens were extracted from the tube in four different orientations and tested in tension with stereo-DIC measurements on both sides of the specimen. Corresponding Finite Element Analysis (FEA) with calibrated isotropic (von Mises) and anisotropic (Yld2004-18p) yield functions were also conducted, and both global force-extension curves as well as full-field strains were compared between the experiments and simulations. Specifically, quantitative full-field strain error maps were computed using the DIC-leveling approach proposed by Lava et al. The specimens experienced small deviations from ideal boundary conditions in the experiments, which had a first-order effect on the results. Therefore, the actual experimental boundary conditions had to be applied to the FEA in order to make valid comparisons. The predicted global force-extension curves agreed well with the measurements overall, but were sensitive to the boundary conditions in the nonlinear regime and could not differentiate between the two yield functions. Interrogation of the strain fields both qualitatively and quantitatively showed that the Yld2004-18p model was clearly able to better describe the strain fields on the surface of the specimen compared to the von Mises model. These results justify the increased complexity of the calibration process required for the Yld2004-18p model in applications where capturing the strain field evolution accurately is important, but not if only the global force-extension response of the elastic–plastic region is of interest.

More Details

Validation of finite-element models using full-field experimental data: Levelling finite-element analysis data through a digital image correlation engine

Strain

Lava, Pascal; Jones, Elizabeth M.; Wittevrongel, Lukas; Pierron, Fabrice

Full-field data from digital image correlation (DIC) provide rich information for finite-element analysis (FEA) validation. However, there are several inherent inconsistencies between FEA and DIC data that must be rectified before meaningful, quantitative comparisons can be made, including strain formulations, coordinate systems, data locations, strain calculation algorithms, spatial resolutions and data filtering. In this paper, we investigate two full-field validation approaches: (1) the direct interpolation approach, which addresses the first three inconsistencies by interpolating the quantity of interest from one mesh to the other, and (2) the proposed DIC-levelling approach, which addresses all six inconsistencies simultaneously by processing the FEA data through a stereo-DIC simulator to ‘level' the FEA data to the DIC data in a regularisation sense. Synthetic ‘experimental' DIC data were generated based on a reference FEA of an exemplar test specimen. The direct interpolation approach was applied, and significant strain errors were computed, even though there was no model form error, because the filtering effect of the DIC engine was neglected. In contrast, the levelling approach provided accurate validation results, with no strain error when no model form error was present. Next, model form error was purposefully introduced via a mismatch of boundary conditions. With the direct interpolation approach, the mismatch in boundary conditions was completely obfuscated, while with the levelling approach, it was clearly observed. Finally, the ‘experimental' DIC data were purposefully misaligned slightly from the FEA data. Both validation techniques suffered from the misalignment, thus motivating continued efforts to develop a robust alignment process. In summary, direct interpolation is insufficient, and the proposed levelling approach is required to ensure that the FEA and the DIC data have the same spatial resolution and data filtering. Only after the FEA data have been ‘levelled' to the DIC data can meaningful, quantitative error maps be computed.

More Details

X-Ray Stereo Digital Image Correlation

Experimental Techniques

Jones, Elizabeth M.; Quintana, Enrico C.; Reu, Phillip L.; Wagner, Justin W.

Digital Image Correlation (DIC) is a well-established, non-contact diagnostic technique used to measure shape, displacement and strain of a solid specimen subjected to loading or deformation. However, measurements using standard DIC can have significant errors or be completely infeasible in challenging experiments, such as explosive, combustion, or fluid-structure interaction applications, where beam-steering due to index of refraction variation biases measurements or where the sample is engulfed in flames or soot. To address these challenges, we propose using X-ray imaging instead of visible light imaging for stereo-DIC, since refraction of X-rays is negligible in many situations, and X-rays can penetrate occluding material. Two methods of creating an appropriate pattern for X-ray DIC are presented, both based on adding a dense material in a random speckle pattern on top of a less-dense specimen. A standard dot-calibration target is adapted for X-ray imaging, allowing the common bundle-adjustment calibration process in commercial stereo-DIC software to be used. High-quality X-ray images with sufficient signal-to-noise ratios for DIC are obtained for aluminum specimens with thickness up to 22.2 mm, with a speckle pattern thickness of only 80 μm of tantalum. The accuracy and precision of X-ray DIC measurements are verified through simultaneous optical and X-ray stereo-DIC measurements during rigid in-plane and out-of-plane translations, where errors in the X-ray DIC displacements were approximately 2–10 μm for applied displacements up to 20 mm. Finally, a vast reduction in measurement error—5–20 times reduction of displacement error and 2–3 times reduction of strain error—is demonstrated, by comparing X-ray and optical DIC when a hot plate induced a heterogeneous index of refraction field in the air between the specimen and the imaging systems. Collectively, these results show the feasibility of using X-ray-based stereo-DIC for non-contact measurements in exacting experimental conditions, where optical DIC cannot be used.

More Details

High-speed x-ray stereo digital image correlation for fluid-structure interactions in a shock tube

AIAA Scitech 2020 Forum

James, Jeremy W.; Jones, Elizabeth M.; Quintana, Enrico C.; Lynch, Kyle P.; Halls, Benjamin R.; Wagner, Justin W.

X-ray stereo digital image correlation (DIC) measurements were performed at 10 kHz on a jointed-structure in a shock tube at a shock Mach number of 1.42. The X-ray results were compared to optical DIC using visible light. In the X-ray measurements, an internal surface with a tantalum-epoxy DIC pattern was imaged, whereas the optical DIC imaged an external surface. The environment within the shock tube caused temperature and density gradients in the gas through which the structure was imaged, therefore leading to spatial and temporal index of refraction variations. These variations caused beam-steering effects that resulted in bias error in optical DIC measurements. X-rays were used to mitigate the effects of beam-steering caused by the shock tube environment. Beam displacements measured using X-ray DIC followed similar trends (slopes, oscillations amplitudes and frequencies) as optical DIC data while ignoring beam-steering effects. Power spectral densities of both measurements showed peaks at the natural frequencies of the structure. X-ray DIC also has the advantage of being able to image internal structural responses, whereas optical DIC is only capable of measurements on the outer surface of objects.

More Details

Investigation of assumptions and approximations in the virtual fields method for a viscoplastic material model

Strain

Jones, Elizabeth M.; Karlson, Kyle N.; Reu, Phillip L.

The Virtual Fields Method (VFM) is an inverse technique used for parameter estimation and calibration of constitutive models. Many assumptions and approximations—such as plane stress, incompressible plasticity, and spatial and temporal derivative calculations—are required to use VFM with full-field deformation data, for example, from Digital Image Correlation (DIC). This work presents a comprehensive discussion of the effects of these assumptions and approximations on parameters identified by VFM for a viscoplastic material model for 304L stainless steel. We generated synthetic data from a Finite-Element Analysis (FEA) in order to have a reference solution with a known material model and known model parameters, and we investigated four cases in which successively more assumptions and approximations were included in the data. We found that VFM is tolerant to small deviations from the plane stress condition in a small region of the sample, and that the incompressible plasticity assumption can be used to estimate thickness changes with little error. A local polynomial fit to the displacement data was successfully employed to compute the spatial displacement gradients. The choice of temporal derivative approximation (i.e., backwards difference versus central difference) was found to have a significant influence on the computed rate of deformation and on the VFM results for the rate-dependent model used in this work. Finally, the noise introduced into the displacement data from a stereo-DIC simulator was found to have negligible influence on the VFM results. Evaluating the effects of assumptions and approximations using synthetic data is a critical first step for verifying and validating VFM for specific applications. The results of this work provide the foundation for confidently using VFM for experimental data.

More Details
Results 1–25 of 65
Results 1–25 of 65