Phenomenology of shear coupled grain boundary motion in symmetric tilt and general grain boundaries
Proposed for publication in Acta Materialia.
Abstract not provided.
Proposed for publication in Acta Materialia.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Modelling and Simulation in Materials Science and Engineering.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Plasticity
Despite the technological importance of body-centered cubic (BCC) metals, models of their plastic deformation are less common than those of face-centered cubic (FCC) metals, due in part to the complexity of slip in BCC crystals caused by the thermal activation of screw dislocation motion. This paper presents a physically based crystal plasticity model that incorporates atomistic models and experimental measurements of the thermally activated nature of screw dislocation motion. This model, therefore, reproduces the temperature, stress, and strain rate dependence of flow in BCC metals in a simple formulation that will allow for large, grain-scale simulations. Furthermore, the results illustrate the importance of correctly representing mechanistic transitions in materials with high lattice friction. © 2012 Elsevier Ltd. All rights reserved.
Materials Science Forum
During large-strain plastic deformation, subgrain structures typically develop within the grains. At large enough equivalent strains above, say 0.5, recrystallization occurs via abnormal coarsening of the subgrain structure or abnormal (sub-) grain growth (AsGG). The fraction of subgrains that develop into new, recrystallized grains has been quantified as a function of texture spread (Grain Reference Orientation Deviation) using Monte Carlo simulation. When this fraction is combined with the known monotonic increase in mean misorientation with strain, the recrystallized grain size can be predicted as a function of von Mises strain. The prediction is in good agreement with experimental results drawn from the literature. © (2012) Trans Tech Publications, Switzerland.
Abstract not provided.
Abstract not provided.
JOM
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Nuclear Materials
Abstract not provided.
Abstract not provided.
Journal of Nuclear Materials
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.
Legislated requirements and industry standards are replacing eutectic lead-tin (Pb-Sn) solders with lead-free (Pb-free) solders in future component designs and in replacements and retrofits. Since Pb-free solders have not yet seen service for long periods, their long-term behavior is poorly characterized. Because understanding the reliability of Pb-free solders is critical to supporting the next generation of circuit board designs, it is imperative that we develop, validate and exercise a solder lifetime model that can capture the thermomechanical response of Pb-free solder joints in stockpile components. To this end, an ASC Level 2 milestone was identified for fiscal year 2010: Milestone 3605: Utilize experimentally validated constitutive model for lead-free solder to simulate aging and reliability of solder joints in stockpile components. This report documents the completion of this milestone, including evidence that the milestone completion criteria were met and a summary of the milestone Program Review.
One of the tenets of nanotechnology is that the electrical/optical/chemical/biological properties of a material may be changed profoundly when the material is reduced to sufficiently small dimensions - and we can exploit these new properties to achieve novel or greatly improved material's performance. However, there may be mechanical or thermodynamic driving forces that hinder the synthesis of the structure, impair the stability of the structure, or reduce the intended performance of the structure. Examples of these phenomena include de-wetting of films due to high surface tension, thermally-driven instability of nano-grain structure, and defect-related internal dissipation. If we have fundamental knowledge of the mechanical processes at small length scales, we can exploit these new properties to achieve robust nanodevices. To state it simply, the goal of this program is the fundamental understanding of the mechanical properties of materials at small length scales. The research embodied by this program lies at the heart of modern materials science with a guiding focus on structure-property relationships. We have divided this program into three Tasks, which are summarized: (1) Mechanics of Nanostructured Materials (PI Blythe Clark). This task aims to develop a fundamental understanding of the mechanical properties and thermal stability of nanostructured metals, and of the relationship between nano/microstructure and bulk mechanical behavior through a combination of special materials synthesis methods, nanoindentation coupled with finite-element modeling, detailed electron microscopic characterization, and in-situ transmission electron microscopy experiments. (2) Theory of Microstructures and Ensemble Controlled Deformation (PI Elizabeth A. Holm). The goal of this Task is to combine experiment, modeling, and simulation to construct, analyze, and utilize three-dimensional (3D) polycrystalline nanostructures. These full 3D models are critical for elucidating the complete structural geometry, topology, and arrangements that control experimentally-observed phenomena, such as abnormal grain growth, grain rotation, and internal dissipation measured in nanocrystalline metal. (3) Mechanics and Dynamics of Nanostructured and Nanoscale Materials (PI John P. Sullivan). The objective of this Task is to develop atomic-scale understanding of dynamic processes including internal dissipation in nanoscale and nanostructured metals, and phonon transport and boundary scattering in nanoscale structures via internal friction measurements.
Abstract not provided.
Abstract not provided.
Metallurgical and Materials Transactions
Abstract not provided.
Acta Materialia
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Interfaces are a critical determinant of the full range of materials properties, especially at the nanoscale. Computational and experimental methods developed a comprehensive understanding of nanograin evolution based on a fundamental understanding of internal interfaces in nanocrystalline nickel. It has recently been shown that nanocrystals with a bi-modal grain-size distribution possess a unique combination of high-strength, ductility and wear-resistance. We performed a combined experimental and theoretical investigation of the structure and motion of internal interfaces in nanograined metal and the resulting grain evolution. The properties of grain boundaries are computed for an unprecedented range of boundaries. The presence of roughening transitions in grain boundaries is explored and related to dramatic changes in boundary mobility. Experimental observations show that abnormal grain growth in nanograined materials is unlike conventional scale material in both the level of defects and the formation of unfavored phases. Molecular dynamics simulations address the origins of some of these phenomena.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the International Journal of Plasticity.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Plasticity
Many conventional continuum approaches to solid mechanics do not address the size sensitivity of deformation to microstructural features like grain boundaries, and are therefore unable to capture much of the experimentally observed behavior of polycrystal deformation. We propose a non-local crystal plasticity model, in which the geometrically necessary dislocation (GND) density is calculated using a non-local integral approach. The model is based on augmented FeFp kinematics, which account for the initial microstructure (primarily grain boundaries) present in the polycrystal. With the augmented kinematics, the initial GND and the evolving GND state are determined in a consistent manner. The expanded kinematics and the non-local crystal plasticity model are used to simulate the tensile behavior in copper polycrystals with different grain sizes ranging from 14 μm to 244 μm. The simulation results show a grain size dependence on the polycrystal's yield strength, which are in good agreement with the experimental data. © 2007 Elsevier Ltd. All rights reserved.
Abstract not provided.