Publications

6 Results
Skip to search filters

Accurate Compression of Tabulated Chemistry Models with Partition of Unity Networks

Combustion Science and Technology

Armstrong, Elizabeth A.; Hansen, Michael A.; Knaus, Robert C.; Trask, Nathaniel A.; Hewson, John C.; Sutherland, James C.

Tabulated chemistry models are widely used to simulate large-scale turbulent fires in applications including energy generation and fire safety. Tabulation via piecewise Cartesian interpolation suffers from the curse-of-dimensionality, leading to a prohibitive exponential growth in parameters and memory usage as more dimensions are considered. Artificial neural networks (ANNs) have attracted attention for constructing surrogates for chemistry models due to their ability to perform high-dimensional approximation. However, due to well-known pathologies regarding the realization of suboptimal local minima during training, in practice they do not converge and provide unreliable accuracy. Partition of unity networks (POUnets) are a recently introduced family of ANNs which preserve notions of convergence while performing high-dimensional approximation, discovering a mesh-free partition of space which may be used to perform optimal polynomial approximation. In this work, we assess their performance with respect to accuracy and model complexity in reconstructing unstructured flamelet data representative of nonadiabatic pool fire models. Our results show that POUnets can provide the desirable accuracy of classical spline-based interpolants with the low memory footprint of traditional ANNs while converging faster to significantly lower errors than ANNs. For example, we observe POUnets obtaining target accuracies in two dimensions with 40 to 50 times less memory and roughly double the compression in three dimensions. We also address the practical matter of efficiently training accurate POUnets by studying convergence over key hyperparameters, the impact of partition/basis formulation, and the sensitivity to initialization.

More Details

Characterizing Tradeoffs in Memory, Accuracy, and Speed for Chemistry Tabulation Techniques

Combustion Science and Technology

Armstrong, Elizabeth A.; Hewson, John C.; Sutherland, James C.

Chemistry tabulation is a common approach in practical simulations of turbulent combustion at engineering scales. Linear interpolants have traditionally been used for accessing precomputed multidimensional tables but suffer from large memory requirements and discontinuous derivatives. Higher-degree interpolants address some of these restrictions but are similarly limited to relatively low-dimensional tabulation. Artificial neural networks (ANNs) can be used to overcome these limitations but cannot guarantee the same accuracy as interpolants and introduce challenges in reproducibility and reliable training. These challenges are enhanced as the physics complexity to be represented within the tabulation increases. In this manuscript, we assess the efficiency, accuracy, and memory requirements of Lagrange polynomials, tensor product B-splines, and ANNs as tabulation strategies. We analyze results in the context of nonadiabatic flamelet modeling where higher dimension counts are necessary. While ANNs do not require structuring of data, providing benefits for complex physics representation, interpolation approaches often rely on some structuring of the table. Interpolation using structured table inputs that are not directly related to the variables transported in a simulation can incur additional query costs. This is demonstrated in the present implementation of heat losses. We show that ANNs, despite being difficult to train and reproduce, can be advantageous for high-dimensional, unstructured datasets relevant to nonadiabatic flamelet models. We also demonstrate that Lagrange polynomials show significant speedup for similar accuracy compared to B-splines.

More Details
6 Results
6 Results