Publications

22 Results
Skip to search filters

3D optical diagnostics for explosively driven deformation and fragmentation

International Journal of Impact Engineering

Guildenbecher, Daniel R.; Jones, Elizabeth M.; Munz, Elise D.; Reu, Phillip L.; Miller, Timothy J.; Perez, Francisco; Thompson, Andrew D.; Ball, James P.

High-speed, optical imaging diagnostics are presented for three-dimensional (3D) quantification of explosively driven metal fragmentation. At early times after detonation, Digital Image Correlation (DIC) provides non-contact measures of 3D case velocities, strains, and strain rates, while a proposed stereo imaging configuration quantifies in-flight fragment masses and velocities at later times. Experiments are performed using commercially obtained RP-80 detonators from Teledyne RISI, which are shown to create a reproducible fragment field at the benchtop scale. DIC measurements are compared with 3D simulations, which have been ‘leveled’ to match the spatial resolution of DIC. Results demonstrate improved ability to identify predicted quantities-of-interest that fall outside of measurement uncertainty and shot-to-shot variability. Similarly, video measures of fragment trajectories and masses allow rapid experimental repetition and provide correlated fragment size-velocity measurements. Measured and simulated fragment mass distributions are shown to agree within confidence bounds, while some statistically meaningful differences are observed between the measured and predicted conditionally averaged fragment velocities. Together these techniques demonstrate new opportunities to improve future model validation.

More Details

Tomographic time-resolved laser-induced incandescence

AIAA Scitech 2020 Forum

Munz, Elise D.; Halls, Benjamin R.; Richardson, Daniel R.; Guildenbecher, Daniel R.; Cenker, Emre; Paciaroni, Megan E.

Three ultra-high-speed, 10 MHz, cameras imaged the time-resolved decay of laser-induced incandescence (LII) from soot in a turbulent non-premixed ethylene jet flame. Cameras were equipped with a stereoscope allowing each CMOS array to capture two separate views of the flame. The resulting six views were reconstructed into a volumetric soot decay series using commercially available DaVis tomographic software by LaVision. Primary soot particle sizes were estimated from the decay time history on a per voxel basis by comparing measured signals to an LII model. Experimentally quantified soot particle sizes agree with existing predictions and previous measurements.

More Details

Development and uncertainty characterization of 3D particle location from perspective shifted plenoptic images

Optics Express

Munz, Elise D.; Guildenbecher, Daniel R.; Thurow, Brian S.

This work details the development of an algorithm to determine 3D position and in plane size and shape of particles by exploiting the perspective shift capabilities of a plenoptic camera combined with stereo-matching methods. This algorithm is validated using an experimental data set previously examined in a refocusing based particle location study in which a static particle field is translated to provide known depth displacements at varied magnification and object distances. Examination of these results indicates increased accuracy and precision is achieved compared to a previous refocusing based method at significantly reduced computational costs. The perspective shift method is further applied to fragment localization and sizing in a lab scale fragmenting explosive.

More Details

Volumetric calibration of a plenoptic camera

Applied Optics

Munz, Elise D.; Fahringer, Timothy W.; Guildenbecher, Daniel R.; Thurow, Brian S.

Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

More Details

Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics

Guildenbecher, Daniel R.; Munz, Elise D.

Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.

More Details

Volumetric calibration of a plenoptic camera

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Munz, Elise D.; Fahringer, Timothy W.; Thurow, Brian S.; Guildenbecher, Daniel R.

Due to the increasing prevalence of plenoptic imaging it is necessary to explore the volumetric calibration of this imaging system to correct for inaccuracies due to real world lens distortions and thin lens assumptions in current processing methods. An overview of plenoptic imaging is given and methods of volumetric calibration of a plenoptic camera based on a polynomial mapping function are presented. The accuracy and feasibility of these methods are examined. Preliminary results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy. Depth accuracy of particle location in calibrated volumes was measured to be accurate within 1% of the calculated volume size.

More Details

Comparison of three-dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

Applied Optics

Munz, Elise D.; Thurow, Brian S.; Guildenbecher, Daniel R.

Digital in-line holography (DIH) and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with DIH. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and DIH successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. In contrast, plenoptic imaging allows for a simpler experimental configuration and, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments.

More Details

A preliminary comparison of three dimensional particle tracking and sizing using plenoptic imaging and digital in-line holography

54th AIAA Aerospace Sciences Meeting

Munz, Elise D.; Thurow, Brian S.; Guildenbecher, Daniel R.; Farias, Paul A.

Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenoptic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

More Details

A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography [PowerPoint]

Guildenbecher, Daniel R.; Munz, Elise D.; Farias, Paul A.; Thruow, Brian S.

Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

More Details
22 Results
22 Results