Publications

14 Results
Skip to search filters

Thermal cycling effects and governing mechanisms of a CNT latex nanocomposite film

International SAMPE Technical Conference

Briggs, Timothy B.; O'Bryan, Gregory O.; Loyola, B.R.; La Ford, M.; Yang, Elaine L.; Vance, Andrew L.; Skinner, J.L.

The thermal cycling effects as well as isothermal conditions on a conductive multi-walled carbon nanotube (MWCNT) filled latex film are presented and analyzed for a multi-day exposure period. Using a water-based latex solution, multi-walled CNT's have been doped within it and then applied with stencil masked spray deposition to the surface of a non-conductive manufactured substrate. Four-point probe resistivity measurements were conducted in-situ via electrodes deposited across the width of the latex film on the top surface via brush application. The temperature range of consideration was computer controlled using a nitrogen purged environmental chamber cycling between-50 to 80 °C with isothermal holds at each extrema. We have identified long term and short-term temperature-dependent resistivity trends as well as a correlation between environmental conditions and the effect on electrical properties of the nanocomposite.

More Details

Planar-localized surface plasmon resonance device by block-copolymer and nanoimprint lithography fabrication methods

Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics

Yang, Chu-Yeu P.; Yang, Elaine L.; Steinhaus, Charles A.; Liu, Chi C.; Nealey, Paul F.; Skinner, J.L.

The authors report on the integration of delocalized surface plasmon resonances (SPRs) and localized surface plasmon resonances (LSPRs) on a single device. The submicron SPR device was fabricated with nanoimprint lithography (NIL). Gold nanoparticles for LSPR generation were created and deposited via three methods and analyzed with rhodamine 6 G and surface-enhanced Raman spectroscopy (SERS). Compared to drop-cast and thin film annealing methods, gold nanoparticles fabricated from a diblock-copolymer NIL template produced the most significant effect on the charge-transfer component of the SERS enhancement mechanism due to near-field interactions at the 10 nm inter-particle separation region. The authors also report a 26 enhancement of optical resonance with an integrated SPR-LSPR plasmonic device consisting of a two-dimensional submicron aluminum grating fully coupled with gold nanoparticles measuring 20.4 nm in diameter in a water medium. If the 2D aluminum grating were coupled to an optimized nanoparticle SERS device fabricated from a DBCP NIL template, the coupled nanoparticle-grating device could exhibit an even higher enhancement and optical resonance performance. © 2012 American Vacuum Society.

More Details
14 Results
14 Results