Publications

16 Results
Skip to search filters

Machined phononic crystals to block high-order Lamb waves and crosstalk in through-metal ultrasonic communication systems

Applied Physics Letters

Sugino, Christopher S.; Gerbe, Romain G.; Baca, Ehren B.; Reinke, Charles M.; Ruzzene, Massimo R.; Erturk, Alper E.; El-Kady, I.

For systems that require complete metallic enclosures (e.g., containment buildings for nuclear reactors), it is impossible to access interior sensors and equipment using standard electromagnetic techniques. A viable way to communicate and supply power through metallic barriers is the use of elastic waves and ultrasonic transducers, introducing several design challenges that must be addressed. Specifically, the use of multiple communication channels on the same enclosure introduces an additional mechanism for signal crosstalk between channels: guided waves propagating in the barrier between channels. This work numerically and experimentally investigates a machined phononic crystal to block MHz Lamb wave propagation between ultrasonic communication channels, greatly reducing wave propagation and the resulting crosstalk voltage. Blind grooves are machined into one or both sides of a metallic barrier to introduce a periodic unit cell, greatly altering the guided wave dispersion in the barrier. Numerical simulations are used to determine a set of groove geometries for testing, and experiments were performed to characterize the wave-blocking performance of each design. The best-performing design was tested using piezoelectric transducers bonded to the barrier, showing a 14.4 dB reduction in crosstalk voltage. Overall, the proposed periodic grooving method is a promising technique for completely isolating ultrasonic power/data transfer systems operating in a narrow frequency range.

More Details

Void-free copper electrodeposition in high aspect ratio, full wafer thickness through-silicon vias with endpoint detection

Journal of the Electrochemical Society

Schmitt, Rebecca P.; Menk, Lyle A.; Baca, Ehren B.; Bower, John E.; Romero, Joseph A.; Jordan, Matthew J.; Jackson, Nathan; Hollowell, Andrew E.

High density interconnects are required for increased input/output for microelectronics applications, incentivizing the development of Cu electrochemical deposition (ECD) processes for high aspect ratio through-silicon vias (TSVs). This work outlines Cu ECD processes for 62.5 μm diameter TSVs, etched into a 625 μm thick silicon substrate, a 10:1 aspect ratio. Cu ECD in high aspect ratio features relies on a delicate balance of electrolyte composition, solution replenishment, and applied voltage. Implementing a CuSO4-H2SO4 electrolyte, which contains suppressor and a low chloride concentration, allows for a tunable relationship between applied voltage and localized deposition in the vias. A stepped potential waveform was applied to move the Cu growth front from the bottom of the via to the top. Sample characterization was performed through mechanical cross-sections and X-ray computed tomography (CT) scans. The CT scans revealed small seam voids in the Cu electrodeposit, and process parameters were tuned accordingly to produce void-free Cu features. During the voltage-controlled experiments, measured current data showed a characteristic current minimum, which was identified as an endpoint detection method for Cu deposition in these vias. We believe this is the first report of this novel endpoint detection method for TSV filling.

More Details

Galvanostatic plating with a single additive electrolyte for bottom-up filling of copper in mesoscale TSVs

Journal of the Electrochemical Society

Menk, L.A.; Baca, Ehren B.; Blain, Matthew G.; McClain, Jaime L.; Dominguez, Jason J.; Smith, A.; Hollowell, Andrew E.

A methanesulfonic acid (MSA) electrolyte with a single suppressor additive was used for potentiostatic bottom-up filling of copper in mesoscale through silicon vias (TSVs). Conversly, galvanostatic deposition is desirable for production level full wafer plating tools as they are typically not equipped with reference electrodes which are required for potentiostatic plating. Potentiostatic deposition was used to determine the over-potential required for bottom-up TSV filling and the resultant current was measured to establish a range of current densities to investigate for galvanostatic deposition. Galvanostatic plating conditions were then optimized to achieve void-free bottom-up filling in mesoscale TSVs for a range of sample sizes.

More Details
16 Results
16 Results