Publications

23 Results
Skip to search filters

Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned

Maunz, Peter L.; Blume-Kohout, Robin J.; Blain, Matthew G.; Benito, Francisco B.; Berry, Christopher W.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Dagel, Amber L.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Lobser, Daniel L.; Mizrahi, Jonathan M.; Nielsen, Erik N.; Resnick, Paul J.; Rembetski, John F.; Rudinger, Kenneth M.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Stick, Daniel L.

Abstract not provided.

Micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Hollowell, Andrew E.; Lobser, Daniel L.; Nordquist, Christopher N.; Benito, Francisco M.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Resnick, Paul J.; Rembetski, John F.; Sterk, Jonathan D.; Stick, Daniel L.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.; Blain, Matthew G.; Scrymgeour, David S.

Abstract not provided.

Scalable micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Benito, Francisco M.; Berry, Christopher W.; Blain, Matthew G.; Haltli, Raymond A.; Clark, Craig R.; Clark, Susan M.; Heller, Edwin J.; Hollowell, Andrew E.; Mizrahi, Jonathan M.; Nordquist, Christopher N.; Resnick, Paul J.; Rembetski, John F.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.

Abstract not provided.

Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps

Highstrete, Clark H.; Sterk, Jonathan D.; Heller, Edwin J.; Maunz, Peter L.; Nordquist, Christopher N.; Stevens, James E.; Tigges, Chris P.; Blain, Matthew G.

Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb+ hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ion traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.

More Details

Sandia Micro-fabricated Ion Traps for the MUSIQC architecture

Maunz, Peter L.; Heller, Edwin J.; Hollowell, Andrew E.; Kemme, S.A.; Loviza, Becky G.; Mizrahi, Jonathan A.; Ortega, Anathea C.; Scrymgeour, David S.; Sterk, Jonathan D.; Tigges, Chris P.; Dagel, Amber L.; Clark, Craig R.; Stick, Daniel L.; Blain, Matthew G.; Clark, Susan M.; Resnick, Paul J.; Arrington, Christian L.; Benito, Francisco M.; Boye, Robert B.; Ellis, A.R.; Haltli, Raymond A.

Abstract not provided.

A revolution in micropower : the catalytic nanodiode

Creighton, J.R.; Baucom, Kevin C.; Coltrin, Michael E.; Figiel, J.J.; Cross, Karen C.; Koleske, Daniel K.; Pawlowski, Roger P.; Heller, Edwin J.; Bogart, Katherine B.; Coker, Eric N.

Our ability to field useful, nano-enabled microsystems that capitalize on recent advances in sensor technology is severely limited by the energy density of available power sources. The catalytic nanodiode (reported by Somorjai's group at Berkeley in 2005) was potentially an alternative revolutionary source of micropower. Their first reports claimed that a sizable fraction of the chemical energy may be harvested via hot electrons (a 'chemicurrent') that are created by the catalytic chemical reaction. We fabricated and tested Pt/GaN nanodiodes, which eventually produced currents up to several microamps. Our best reaction yields (electrons/CO{sub 2}) were on the order of 10{sup -3}; well below the 75% values first reported by Somorjai (we note they have also been unable to reproduce their early results). Over the course of this Project we have determined that the whole concept of 'chemicurrent', in fact, may be an illusion. Our results conclusively demonstrate that the current measured from our nanodiodes is derived from a thermoelectric voltage; we have found no credible evidence for true chemicurrent. Unfortunately this means that the catalytic nanodiode has no future as a micropower source.

More Details

Preliminary systems engineering evaluations for the National Ecological Observatory Network

Kottenstette, Richard K.; Heller, Edwin J.; Ivey, Mark D.; Brocato, Robert W.; Zak, Bernard D.; Zirzow, Jeffrey A.; Schubert, William K.; Crouch, Shannon M.; Dishman, James L.; Robertson, Perry J.; Osborn, Thor D.

The National Ecological Observatory Network (NEON) is an ambitious National Science Foundation sponsored project intended to accumulate and disseminate ecologically informative sensor data from sites among 20 distinct biomes found within the United States and Puerto Rico over a period of at least 30 years. These data are expected to provide valuable insights into the ecological impacts of climate change, land-use change, and invasive species in these various biomes, and thereby provide a scientific foundation for the decisions of future national, regional, and local policy makers. NEON's objectives are of substantial national and international importance, yet they must be achieved with limited resources. Sandia National Laboratories was therefore contracted to examine four areas of significant systems engineering concern; specifically, alternatives to commercial electrical utility power for remote operations, approaches to data acquisition and local data handling, protocols for secure long-distance data transmission, and processes and procedures for the introduction of new instruments and continuous improvement of the sensor network. The results of these preliminary systems engineering evaluations are presented, with a series of recommendations intended to optimize the efficiency and probability of long-term success for the NEON enterprise.

More Details

A tunable electrochromic fabry-perot filter for adaptive optics applications

Kammler, Daniel K.; Ambrosini, Andrea A.; Yelton, William G.; Verley, Jason V.; Heller, Edwin J.; Sweatt, W.C.

The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set, the severe absorption associated with the refractive index change suggests that incorporating EC materials into phase correcting spatial light modulators (SLMS) would allow for only negligible phase correction before transmission losses became too severe. However, we would like to emphasize that other EC materials may allow sufficient phase correction with limited absorption, which could make this approach attractive.

More Details

Integrated Microsensors for Autonomous Microrobots

Heller, Edwin J.; Adkins, Douglas R.; Byrne, Raymond H.; Heller, Edwin J.; Wolf, Jimmie V.

This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.

More Details

Monolithic GaAs surface acoustic wave chemical microsensor array

Hietala, Vincent M.; Casalnuovo, Stephen A.; Heller, Edwin J.; Wendt, J.R.; Frye-Mason, Gregory C.; Baca, A.G.

A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

More Details

The development of integrated chemical microsensors in GaAs

Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Vincent M.; Baca, A.G.

Monolithic, integrated acoustic wave chemical microsensors are being developed on gallium arsenide (GaAs) substrates. With this approach, arrays of microsensors and the high frequency electronic components needed to operate them reside on a single substrate, increasing the range of detectable analytes, reducing overall system size, minimizing systematic errors, and simplifying assembly and packaging. GaAs is employed because it is both piezoelectric, a property required to produce the acoustic wave devices, and a semiconductor with a mature microelectronics fabrication technology. Many aspects of integrated GaAs chemical sensors have been investigated, including: surface acoustic wave (SAW) sensors; monolithic SAW delay line oscillators; GaAs application specific integrated circuits (ASIC) for sensor operation; a hybrid sensor array utilizing these ASICS; and the fully monolithic, integrated SAW array. Details of the design, fabrication, and performance of these devices are discussed. In addition, the ability to produce heteroepitaxial layers of GaAs and aluminum gallium arsenide (AlGaAs) makes possible micromachined membrane sensors with improved sensitivity compared to conventional SAW sensors. Micromachining techniques for fabricating flexural plate wave (FPW) and thickness shear mode (TSM) microsensors on thin GaAs membranes are presented and GaAs FPW delay line and TSM resonator performance is described.

More Details
23 Results
23 Results