Publications

Results 1–50 of 184
Skip to search filters

Evaluation of Engineered Barrier Systems (FY2022 Report)

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Taylor, Autumn D.

This report describes research and development (R&D) activities conducted during Fiscal Year 2022 (FY22) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. The R&D team represented in this report consists of individuals from Sandia National Laboratories, Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), and Vanderbilt University. EBS R&D work also leverages international collaborations to ensure that the DOE program is active and abreast of the latest advances in nuclear waste disposal.

More Details

M4 Summary of EBS International

Hadgu, Teklu H.; Dewers, Thomas D.; Matteo, Edward N.

Thermal-Hydrologic-Mechanical (THM) modeling of DECOVALEX 2023, Task C has continued. In FY2022 the simulations have progressed to Step 1, which is on 3-D modeling of the full-scale emplacement experiment at the Mont Terri Underground Rock Laboratory (Nagra, 2019). This report summarizes progress in Thermal-Hydrologic (TH) modeling of Step 1. THM modeling will be documented in future reports.

More Details

Salt International Collaborations (FY22 Update)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-22SN010303063. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations. The work summarized in this annual update has occurred during the COVID-19 pandemic, and little international or domestic travel has occurred. Most of the collaborations have been conducted via email or as virtual meetings, but a slow return to travel and in-person meetings has begun.

More Details

RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Simo, Eric K.; Herold, Philipp H.; Keller, Andreas K.; Lommerzheim, Andree L.; Matteo, Edward N.; Hadgu, Teklu H.; Jayne, Richard S.; Kuhlman, Kristopher L.; Mills, Melissa M.

The construction of deep geological repositories (DGR) in salt formations requires penetrating through naturally sealing geosphere layers. While the emplaced nuclear waste is primarily protected by the containment-providing rock zone (CRZ), technical barriers are required, for example during handling. For closure geotechnical barriers seal the repository along the accesses against water or solutions from outside and the possible emission paths for radionuclides contained inside. As these barriers must ensure maintenance-free function on a long-term basis, they typically comprise a set of specialized elements with diversified functions that may be used redundantly. The effects of the individual elements are coordinated so that they are collectively referred to as the Engineered Barrier System (EBS).

More Details

Polymer intercalation synthesis of glycoboehmite nanosheets

Applied Clay Science

Bell, Nelson S.; Rodriguez, Mark A.; Kotula, Paul G.; Kruichak, Jessica N.; Hernandez-Sanchez, Bernadette A.; Casillas, Maddison R.; Kolesnichenko, Igor K.; Matteo, Edward N.

Novel materials based on the aluminum oxyhydroxide boehmite phase were prepared using a glycothermal reaction in 1,4-butanediol. Under the synthesis conditions, the atomic structure of the boehmite phase is altered by the glycol solvent in place of the interlayer hydroxyl groups, creating glycoboehmite. The structure of glycoboehmite was examined in detail to determine that glycol molecules are intercalated in a bilayer structure, which would suggest that there is twice the expansion identified previously in the literature. This precursor phase enables synthesis of two new phases that incorporate either polyvinylpyrrolidone or hydroxylpropyl cellulose nonionic polymers. These new materials exhibit changes in morphology, thermal properties, and surface chemistry. All the intercalated phases were investigated using PXRD, HRSTEM, SEM, FT-IR, TGA/DSC, zeta potential titrations, and specific surface area measurement. These intercalation polymers are non-ionic and interact through wetting interactions and hydrogen bonding, rather than by chemisorption or chelation with the aluminum ions in the structure.

More Details

Evaluation of Engineered Barrier Systems FY21 Report

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.; Bell, Nelson S.; Kotula, Paul G.; Kruichak, Jessica N.; Sanchez-Hernandez, Bernadette S.; Casilas, M.C.; Kolesnichenko, Igor K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Zheng, L.Z.; Borglin, S.B.; Lammers, L.L.; Whittaker, M.W.; Zarzycki, P.Z.; Fox, P.F.; Chang, C.C.; Subramanian, N.S.; Nico, P.N.; Tournassat, C.T.; Chou, C.C.; Xu, H.X.; Singer, E.S.; Steefel, C.I.; Peruzzo, L.P.; Wu, Y.W.

This report describes research and development (R&D) activities conducted during fiscal year 2021 (FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc.

More Details

Mechanical characterization of low modulus polymer-modified calcium-silicate-hydrate (C–S–H) binder

Cement and Concrete Composites

Starr, J.; Soliman, E.M.; Matteo, Edward N.; Dewers, Thomas D.; Stormont, J.C.; Reda Taha, M.M.

Calcium-silicate-hydrate (C–S–H) represents a key microstructural phase that governs the mechanical properties of concrete at a large scale. Defects in the C–S–H phase are also responsible for the poor ductility and low tensile strength of concrete. Manipulating the microstructure of C–S–H can lead to new cementitious materials with improved structural performance. This paper presents an experimental investigation aiming to characterize a new synthetic polymer-modified synthetic calcium-silicate-hydrate (C–S–H)/styrene-butadiene rubber (SBR) binder. The new C–S–H/SBR binder is produced by calcining calcium carbonate and mixing this with fumed silica (SiO2), deionized water and SBR. Mechanical, physical, chemical and microstructural characterization was conducted to measure the properties of new hardened C–S–H binder. Results from the experimental investigation demonstrate the ability to engineer a new C–S–H binder with low elastic modulus and improved toughness and bond strength by controlling the SBR content and method of C–S–H synthesis. The new binder suggests the possible development of a new family of low-modulus silica-polymer binders that might fit many engineering applications such as cementing oil and gas wells.

More Details

Advanced Detection of Wellbore Failure for Safe and Secure Utilization of Subsurface Infrastructure

Matteo, Edward N.; Conley, Donald M.; Verzi, Stephen J.; Roberts, Barry L.; Doyle, Casey L.; Sobolik, Steven R.; Gilletly, Samuel G.; Bauer, Stephen J.; Pyrak-Nolte, L.P.; Reda Taha, M.M.; Stormont, J.C.; Crandall, D.C.; Moriarty, Dylan; John, Esther W.; Wilson, Jennifer E.; Bettin, Giorgia B.; Hogancamp, Joshua H.; Fernandez, S.G.; Anwar, I.A.; Abdellatef, M.A.; Murcia, D.H.; Bland, J.B.

The main goal of this project was to create a state-of-the-art predictive capability that screens and identifies wellbores that are at the highest risk of catastrophic failure. This capability is critical to a host of subsurface applications, including gas storage, hydrocarbon extraction and storage, geothermal energy development, and waste disposal, which depend on seal integrity to meet U.S. energy demands in a safe and secure manner. In addition to the screening tool, this project also developed several other supporting capabilities to help understand fundamental processes involved in wellbore failure. This included novel experimental methods to characterize permeability and porosity evolution during compressive failure of cement, as well as methods and capabilities for understanding two-phase flow in damaged wellbore systems, and novel fracture-resistant cements made from recycled fibers.

More Details

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin N.; Xiong, Yongliang X.; Choens, Robert C.; Paul, Matthew J.; Stauffer, Phil S.; Boukhalfa, Hakim B.; Guiltinan, Eric J.; Rahn, Thom R.; Weaver, Doug W.; Otto, Shawn O.; Davis, Jon D.; Rutqvist, Jonny R.; Wu, Yuxin W.; Hu, Mengsu H.; Wang, Jiannan W.

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

FY21 Report on Activities for EBS International

Matteo, Edward N.; Dewers, Thomas D.; Hadgu, Teklu H.

This report summarizes the FY21 Activities for EBS International Collaborations Work Package. The international collaborations work packages aim to leverage knowledge, expertise, and tools from the international nuclear waste community, as deemed relevant according to SFWST “roadmap” priorities. This report describes research and development (R&D) activities conducted during fiscal year 2021(FY21) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). It fulfills the SFWST Campaign deliverable M4SF- 21SN010308062. The R&D activities described in this report focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. Sandia National Laboratories is participating in THM modeling in the international projects EBS Task Force and DECOVALEX 2023. EBS Task Force, Task 11 is on modeling of laboratory-scale High Temperature Column Test conducted at Lawrence Berkeley National Laboratory. DECOVALEX 2023, Task C is on THM modeling of the full-scale emplacement experiment (FE experiment) at the Mont Terri Underground Rock Laboratory, Switzerland. This report summarizes Sandia’s progress in the modeling studies of DECOVALEX 2023, Task C. Modeling studies related to the High Temperature Column Test will be documented in future reports.

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny R.; Guglielmi, Yves G.; Sasaki, Tsubasa S.; Deng, Hang D.; Li, Pei L.; Steefel, Carl S.; Tournassat, Christophe T.; Xu, Hao X.; Babhulgaonkar, Shaswat B.; Birkholzer, Jens T.; Sauer, Kirsten B.; Caporuscio, Florie C.; Rock, Marlena J.; Zavarin, Mavrik Z.; Wolery, Thomas J.; Chang, Elliot C.; Wainwright, Haruko W.

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

Salt International Collaborations FY2021 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.; Stein, Emily S.; Gross, Michael B.

This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven R.; Gilletly, Samuel G.; Doyle, Casey L.; John, Esther W.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

Integrating Machine Learning into a Methodology for Early Detection of Wellbore Failure [Slides]

Matteo, Edward N.; Roberts, Barry L.; Sobolik, Steven R.; Gilletly, Samuel G.; Doyle, Casey L.; John, Esther W.; Verzi, Stephen J.

Approximately 93% of US total energy supply is dependent on wellbores in some form. The industry will drill more wells in next ten years than in the last 100 years (King, 2014). Global well population is around 1.8 million of which approximately 35% has some signs of leakage (i.e. sustained casing pressure). Around 5% of offshore oil and gas wells “fail” early, more with age and most with maturity. 8.9% of “shale gas” wells in the Marcellus play have experienced failure (120 out of 1,346 wells drilled in 2012) (Ingraffea et al., 2014). Current methods for identifying wells that are at highest priority for increased monitoring and/or at highest risk for failure consists of “hand” analysis of multi-arm caliper (MAC) well logging data and geomechanical models. Machine learning (ML) methods are of interest to explore feasibility for increasing analysis efficiency and/or enhanced detection of precursors to failure (e.g. deformations). MAC datasets used to train ML algorithms and preliminary tests were run for “predicting” casing collar locations and performed above 90% in classification and identifying of casing collar locations.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda C.; Mills, Melissa M.; Kruichak, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

Disposal Concepts for a High-Temperature Repository in Shale

Stein, Emily S.; Bryan, Charles R.; Dobson, David C.; Hardin, Ernest H.; Jove Colon, Carlos F.; Lopez, Carlos M.; Matteo, Edward N.; Mohanty, Sitakanta N.; Pendleton, Martha W.; Perry, Frank V.; Prouty, Jeralyn L.; Sassani, David C.; Wang, Yifeng; Rutqvist, Jonny R.; Zheng, Liange Z.; Sauer, Kirsten B.; Caporuscio, Florie C.; Howard, Robert H.; Adeniyi, Abiodun A.; Joseph, Robby J.

Disposal of large, heat-generating waste packages containing the equivalent of 21 pressurized water reactor (PWR) assemblies or more is among the disposal concepts under investigation for a future repository for spent nuclear fuel (SNF) in the United States. Without a long (>200 years) surface storage period, disposal of 21-PWR or larger waste packages (especially if they contain high-burnup fuel) would result in in-drift and near-field temperatures considerably higher than considered in previous generic reference cases that assume either 4-PWR or 12-PWR waste packages (Jové Colón et al. 2014; Mariner et al. 2015; 2017). Sevougian et al. (2019c) identified high-temperature process understanding as a key research and development (R&D) area for the Spent Fuel and Waste Science and Technology (SFWST) Campaign. A two-day workshop in February 2020 brought together campaign scientists with expertise in geology, geochemistry, geomechanics, engineered barriers, waste forms, and corrosion processes to begin integrated development of a high-temperature reference case for disposal of SNF in a mined repository in a shale host rock. Building on the progress made in the workshop, the study team further explored the concepts and processes needed to form the basis for a high-temperature shale repository reference case. The results are described in this report and summarized..

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard S.; Herrick, Courtney G.; Choens, Robert C.; Nemer, Martin N.; Heath, Jason; Matteo, Edward N.; Xiong, Yongliang X.; Otto, Shawn O.; Dozier, Brian D.; Weaver, Doug W.; Stauffer, Phil S.; Guiltinan, Eric J.; Boukhalfa, Hakim B.; Rahn, Thom R.; Wu, Yuxin W.; Rutqvist, Jonny R.; Hu, Mengsu H.; Crandall, Dustin C.

Abstract not provided.

Evaluation of Engineered Barrier Systems FY20 Report

Matteo, Edward N.; Dewers, Thomas D.; Gomez, Steven P.; Hadgu, Teklu H.; Zheng, L.Z.; Lammers, L.L.; Fox, P.F.; Chang, C.C.; Xu, H.X.; Borglin, S.B.; Whittaker, M.W.; Chou, C.C.; Tournassat, N.T.; Subramanian, S.S.; Wu, Y.W.; Nico, P.N.; Gilbert, B.G.; Kneafsey, T.K.; Caporuscio, F.A.; Sauer, K.B.; Rock, M.J.; Kalintsev, A.K.; Migdissov, A.M.; Alcorn, C.A.; Buck, E.C.; Yu, X-Y Y.; Yao, J.Y.; Son, J.S.; Reichers, S.L.; Klein-BenDavid, O.K.; Bar-nes, G.B.; Meeusen, J.C.; Gruber, C.G.; Steen, M S.; Brown, K.G.; Delapp, R.D.; Taylor, A.J.; Ayers, J.A.; Kosson, D.S.

This report describes research and development (R&D) activities conducted during fiscal year 2020 (FY20) specifically related to the Engineered Barrier System (EBS) R&D Work Package in the Spent Fuel and Waste Science and Technology (SFWST) Campaign supported by the United States (U.S.) Department of Energy (DOE). The R&D activities focus on understanding EBS component evolution and interactions within the EBS, as well as interactions between the host media and the EBS. A primary goal is to advance the development of process models that can be implemented directly within the Generic Disposal System Analysis (GDSA) platform or that can contribute to the safety case in some manner such as building confidence, providing further insight into the processes being modeled, establishing better constraints on barrier performance, etc. The FY20 EBS activities involved not only modeling and analysis work, but experimental work as well. Despite delays to some planned activities due to COVID-19 precautions, progress was made during FY20 in multiple research areas and documented in this report as follows: (1) EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN, (2) preliminary sensitivity analysis for the FEBEX in-situ heater test, (3) cement-carbonate rock interaction under saturated conditions: from laboratory to modeling, (4) hydrothermal experiments, (5) progress on investigating the high temperature behavior of the uranyl-carbonate complexes, (6) in-situ and electrochemical work for model validation, (7) investigation of the impact of high temperature on EBS bentonite with THMC modeling, (8) sorption and diffusion experiments on bentonite, (9) chemical controls on montmorillonite structure and swelling pressure, (10) microscopic origins of coupled transport processes in bentonite, (11) understanding the THMC evolution of bentonite in FEBEX-DP—coupled THMC modeling, (12) modeling in support of HotBENT, an experiment studying the effects of high temperatures on clay buffers/near-field, and (13) high temperature heating and hydration column test on bentonite.

More Details

International Collaborations on Radioactive Waste Disposal in Salt (FY20)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard S.; Reedlunn, Benjamin R.; Sobolik, Steven R.; Bean, James B.; Stein, Emily S.; Gross, Michael B.

This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details

EBS Task Force: Task 9/FEBEX Modeling Final Report: Thermo-Hydrological Modeling with PFLOTRAN

Hadgu, Teklu H.; Dewers, Thomas D.; Gomez, Steven P.; Matteo, Edward N.

This report outlines Sandia National Laboratories modeling studies applied to Stage 1 and Stage 2 of the Full-scale Engineered Barriers Experiment in Crystalline Host Rock (FEBEX) in situ test for the SKB EBS Task Force Task 9. The FEBEX test was a full-scale test conducted over ~18 years at the Grimsel, Switzerland Underground Research Laboratory (URL) managed by NAGRA. It involved emplacing simulated waste packages, in the form of welded cylindrical heaters, inside a tunnel in crystalline granitic rock and surrounded by a bentonite barrier and cement plug. Sensors emplaced within the bentonite monitored the wetting-up, heating, and drying out of the bentonite barrier, and the large resulting data set provides an excellent opportunity for validation of multiphysics Thermal-Hydrological (TH), Thermal-Hydrologic-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) modeling approaches for underground nuclear waste storage and the performance of engineered bentonite barriers. The present status of the EBS Task Force is finalizing Task 9, which follows years of modeling studies of the FEBEX test, by many notable modeling teams (Gens et al., 2009; Sanchez et al. 2010; 2012; Samper et al., 2018). These modeling studies generally use two-dimensional axisymmetric meshes, ignoring threedimensional effects, gravity and asymmetric wetting and dry out of the bentonite engineered barrier. This study investigates these effects with use of the PFLOTRAN THC code with massively parallel computational methods in modeling FEBEX Stage 1 and Stage 2 results. The PFLOTRAN numerical code is an open source, state-of-the-art, massively parallel subsurface flow and reactive transport code operating in a high-performance computing environment (Hammond et al., 2014). Section 2 describes the applied partial differential equations describing mass, momentum and energy balance used in this study, considerations derived by assuming phase equilibrium between gas and liquid phases, constitutive equations for granite, cement plug, and bentonite domains, and specific approaches for use inthe PFLOTRAN code. Section 3 describes the geometry, meshing, and model set-up. Section 4 describes modeling results, Section 5 compares modeling results to field testing data, and Section 6 gives conclusions. The Appendix provides detailed information required by the EBSTask Force for final reporting.

More Details
Results 1–50 of 184
Results 1–50 of 184