Publications

138 Results
Skip to search filters

High-fidelity modeling of breakdown in helium: Initiation processes and secondary electron emission

Journal of Physics D: Applied Physics

Lietz, Amanda M.; Barnat, Edward V.; Nail, George R.; Roberds, Nicholas R.; Fierro, Andrew S.; Yee, Benjamin T.; Moore, Christopher H.; Clem, Paul G.; Hopkins, Matthew M.

Understanding the role of physical processes contributing to breakdown is critical for many applications in which breakdown is undesirable, such as capacitors, and applications in which controlled breakdown is intended, such as plasma medicine, lightning protection, and materials processing. The electron emission from the cathode is a critical source of electrons which then undergo impact ionization to produce electrical breakdown. In this study, the role of secondary electron yields due to photons (γ ph) and ions (γ i) in direct current breakdown is investigated using a particle-in-cell direct simulation Monte Carlo model. The plasma studied is a one-dimensional discharge in 50 Torr of pure helium with a platinum cathode, gap size of 1.15 cm, and voltages of 1.2-1.8 kV. The current traces are compared with experimental measurements. Larger values of γ ph generally result in a faster breakdown, while larger values of γ i result in a larger maximum current. The 58.4 nm photons emitted from He(21P) are the primary source of electrons at the cathode before the cathode fall is developed. Of the values of γ ph and γ i investigated, those which provide the best agreement with the experimental current measurements are γ ph = 0.005 and γ i = 0.01. These values are significantly lower than those in the literature for pristine platinum or for a graphitic carbon film which we speculate may cover the platinum. This difference is in part due to the limitations of a one-dimensional model but may also indicate surface conditions and exposure to a plasma can have a significant effect on the secondary electron yields. The effects of applied voltage and the current produced by a UV diode which was used to initiate the discharge, are also discussed.

More Details

Townsend to glow discharge transition for a nanosecond pulse plasma in helium: Space charge formation and resulting electric field dynamics

Plasma Sources Science and Technology

Simeni, Marien S.; Zheng, Yashuang; Barnat, Edward V.; Bruggeman, Peter J.

Stark polarization spectroscopy is used to investigate the temporal evolution of the electric field distribution in the cathode region of a nanosecond pulsed discharge in helium at 120 Torr. The measurements are performed on the He I transition at 492.19 nm, during the early stages of the discharge formation. The experimental results are compared with the predictions of a 1D fluid model. Time-resolved ICCD images show that the discharge develops as a diffuse, cathode-directed ionization wave with a Townsend-like feature before transitioning into a glow-like structure. Near anode instabilities characterized by filament formation were observed near the high voltage electrode. Within 30 ns, a reduction of the sheath thickness to about 250 μm is observed, coinciding with a gradual increase of the discharge current and proportional increase in electric field at the cathode. The cathode electric field corresponding to this sheath with a thickness of 250 μm is about 40 kV cm-1. A subsequent steep increase of the discharge current leads to a further reduction of the sheath width. The electric field evolution as obtained by the fluid model is in excellent agreement with the measurements and shows that an enhanced ionization near the cathode is causing the space charge formation responsible for the increase in electric field.

More Details

Challenges and opportunities in verification and validation of low temperature plasma simulations and experiments

European Physical Journal D

Fierro, A.; Barnat, Edward V.; Hopkins, Matthew M.; Moore, C.; Radtke, G.; Yee, B.

Abstract: This paper describes the verification and validation (V&V) framework developed for the stochastic Particle-in-Cell, Direct Simulation Monte Carlo code Aleph. An ideal framework for V&V from the viewpoint of the authors is described where a physics problem is defined, and relevant physics models and parameters to the defined problem are assessed and captured in a Phenomena Identification and Ranking Table (PIRT). Numerous V&V examples guided by the PIRT for a simple gas discharge are shown to demonstrate the V&V process applied to a real-world simulation tool with the overall goal to demonstrably increase the confidence in the results for the simulation tool and its predictive capability. Although many examples are provided here to demonstrate elements of the framework, the primary goal of this work is to introduce this framework and not to provide a fully complete implementation, which would be a much longer document. Comparisons and contrasts are made to more usual approaches to V&V, and techniques new to the low-temperature plasma community are introduced. Specific challenges relating to the sufficiency of available data (e.g., cross sections), the limits of ad hoc validation approaches, the additional difficulty of utilizing a stochastic simulation tool, and the extreme cost of formal validation are discussed. Graphic Abstract: [Figure not available: see fulltext.]

More Details

Study of vacuum ultraviolet emission in helium and helium/nitrogen mixtures

Journal of Applied Physics

Fierro, Andrew S.; Lehr, Jane; Yee, Benjamin C.; Barnat, Edward V.; Moore, Chris; Hopkins, Matthew M.; Clem, Paul G.

Helium is frequently used as a working medium for the generation of plasmas and is capable of energetic photon emissions. These energetic photon emissions are often attributed to the formation of helium excimer and subsequent photon emission. When the plasma device is exposed to another gas, such as nitrogen, this energetic photon emission can cause photoionization and further ionization wave penetration into the additional gas. Often ignored are the helium resonance emissions that are assumed to be radiation trapped and therefore not pertinent to photoionization. Here, experimental evidence for the presence of helium atomic emission in a pulsed discharge at ten's of Torr is shown. Simulations of a discharge in similar conditions agree with the experimental measurements. In this context, the role of atomic and molecular helium light emission on photoionization of molecular nitrogen in an ionization wave is studied using a kinetic modeling approach that accounts for radiation dynamics in a developing low-temperature plasma. Three different mixtures of helium at a total pressure of 250 Torr are studied in simulation. Photoionization of the nitrogen molecule by vacuum ultraviolet helium emission is used as the only seed source ahead of the ionization front. It is found that even though radiation trapped, the atomic helium emission lines are the significant source of photoionization of nitrogen. The significant effect of radiation trapped photon emission on ionization wave dynamics demonstrates the need to consider these radiation dynamics in plasma reactors where self-absorbed radiation is ignored.

More Details

Theoretical and experimental study of breakdown delay time in pulse discharge

Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV

Schweiger, Irina; Hopkins, Matthew M.; Barnat, Edward V.; Keidar, Michael

PIC MCC simulation results on the breakdown in the pulse discharge in helium at pressure of 100 Torr and voltage of U=3.25 kV are presented. The delay of the breakdown development is studied with different initial densities of plasma and excited helium atoms, which corresponds to various discharge operation frequencies. It is shown that for high concentration of excited atoms the photoemission determines the breakdown delay time. In opposite case of low excited atoms density, the ion-electron emission plays a key role in the breakdown development. The photoemission from the cathode is set with a flux of the photons with Doppler shift over the frequency. These photons are generated in reactions between exited atoms and fast atoms. A wide distribution of breakdown delay time was observed in different runs and analyzed.

More Details

Kinetic simulation of a low-pressure helium discharge with comparison to experimental measurements

Plasma Sources Science and Technology

Fierro, Andrew S.; Barnat, Edward V.; Moore, Chris; Hopkins, Matthew M.; Clem, Paul G.

Modern computational validation efforts rely on comparison of known experimental quantities such as current, voltage, particle densities, and other plasma properties with the same values determined through simulation. A discrete photon approach for radiation transport was recently incorporated into a particle-in-cell/direct simulation Monte Carlo code. As a result, spatially and temporally resolved synthetic spectra may be generated even for non-equilibrium plasmas. The generation of this synthetic spectra lends itself to potentially new validation opportunities. In this work, initial comparisons of synthetic spectra are made with experimentally gathered optical emission spectroscopy. A custom test apparatus was constructed that contains a 0.5 cm gap distance parallel plane discharge in ultra high purity helium gas (99.9999%) at a pressure of 75 Torr. Plasma generation is initiated with the application of a fast rise-time, 100 ns full-width half maximum, 2.0 kV voltage pulse. Transient electrical diagnostics are captured along with time-resolved emission spectra. A one-dimensional simulation is run under the same conditions and compared against the experiment to determine if sufficient physics are included to model the discharge. To sync the current measurements from experiment and simulation, significant effort was undertaken to understand the kinetic scheme required to reproduce the observed features. Additionally, the role of the helium molecule excimer emission and atomic helium resonance emission on photocurrent from the cathode are studied to understand which effect dominates photo-feedback processes. Results indicate that during discharge development, atomic helium resonance emission dominates the photo-flux at the cathode even though it is strongly self-absorbed. A comparison between the experiment and simulation demonstrates that the simulation reproduces observed features in the experimental discharge current waveform. Furthermore, the synthesized spectra from the kinetic method produces more favorable agreement with the experimental data than a simple local thermodynamic equilibrium calculation and is a first step towards using spectra generated from a kinetic method in validation procedures. The results of this study produced a detailed compilation of important helium plasma chemistry reactions for simulating transient helium plasma discharges.

More Details

Influence of Photon and Ion Induced Secondary Yields on Transient Plasma Formation

Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV

Fierro, Andrew S.; Barnat, Edward V.; Moore, Christopher H.; Clem, Paul G.; Hopkins, Matthew M.

The influence of different quantum yields for photons and secondary emission yields for ions striking a surface is investigated. Using a one-dimensional particle-in-cell simulation, these secondary emission coefficients are varied to observe the impact on discharge current. The discharge is assumed to occur in pure helium gas at a pressure of 75 torr. To handle binary particle interactions, the Direct Simulation Monte Carlo (DSMC) method is utilized. The model includes electron-neutral interactions, neutral-neutral interactions, and photon-neutral interactions. It is observed that the discharge current in the early stages of discharge is heavily dependent upon the quantum yield due to photon impact. In the later stages of discharge, the current depends on both the quantum yield and secondary emission coefficient for ion impact.

More Details

Laser collisional induced fluorescence electron density measurements as a function of ring bias and the onset of anode spot formation in a ring cusp magnetic field

Plasma Sources Science and Technology

Arthur, N.A.; Foster, J.E.; Barnat, Edward V.

Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.

More Details

Measurements of fireball onset

Physics of Plasmas

Scheiner, Brett; Barnat, Edward V.; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.

Laser-based measurements of the characteristic features of fireball onset and stabilization in response to a stepped voltage applied to an anode immersed in a low pressure (100 mTorr) helium afterglow are reported. These include spatial and temporal evolution of metastable species, electron density, and electric field magnitude as measured by planar laser induced fluorescence, laser-collision induced fluorescence, and laser-induced fluorescence-dip spectroscopy, respectively. These measurements are found to be in qualitative agreement with recent particle-in-cell simulations and theoretical models [Scheiner et al., Phys. Plasmas 24, 113520 (2017)]. The measurements validate the simulations and models in which fireball onset was predicted to follow from the trapping of electrons born from electron impact ionization within a potential well created by a buildup of ions in the sheath. The experimental measurements also demonstrate transient features following the onset that were not present in previous simulations. New simulation results are presented which demonstrate that these features are associated with the abruptness of the voltage step used to initiate fireball onset. An abrupt step in the anode bias causes rapid displacement of ions and an associated plasma potential response following the sheath and fireball expansion.

More Details

Theory and simulation of anode spots in low pressure plasmas

Physics of Plasmas

Scheiner, Brett; Barnat, Edward V.; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.

When electrodes are biased above the plasma potential, electrons accelerated through the associated electron sheath can dramatically increase the ionization rate of neutrals near the electrode surface. It has previously been observed that if the ionization rate is great enough, a double layer separates a luminous high-potential plasma attached to the electrode surface (called an anode spot or fireball) from the bulk plasma. Here, results of the first 2D particle-in-cell simulations of anode spot formation are presented along with a theoretical model describing the formation process. It is found that ionization leads to the build-up of an ion-rich layer adjacent to the electrode, forming a narrow potential well near the electrode surface that traps electrons born from ionization. It is shown that anode spot onset occurs when a quasineutral region is established in the potential well and the density in this region becomes large enough to violate the steady-state Langmuir condition, which is a balance between electron and ion fluxes across the double layer. A model for steady-state properties of the anode spot is also presented, which predicts values for the anode spot size, double layer potential drop, and form of the sheath at the electrode by considering particle, power, and current balance. These predictions are found to be consistent with the presented simulation and previous experiments.

More Details

Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

Journal of Physics D: Applied Physics

Barnat, Edward V.; Fierro, A.

The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (∼10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ∼1012 e cm-3. The spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.

More Details

Plasma Cleaning Research for Z

Tang, Ricky T.; Miller, Paul A.; Barnat, Edward V.

Z is a high-current pulsed-power generator located at Sandia National Laboratories. It is capable of delivering 100 - ns, 30 - MA current pulses to loads used for materials studies, weapons-effects simulation, and nuclear-fusion research. Under some conditions, a significant fraction of the current does not reach the load but is shunted across the inter-electrode vacuum gap that leads to the load. That undesirable current loss is thought to be due to excessive plasma generation and flow from the electrodes into the vacuum gap. Much past work suggests that this current loss may be reduced if contaminants on or near the surfaces of the electrodes are removed by plasma discharge cleaning. This report describes light-lab work performed in the past year to evaluate and understand plasma cleaning, and to develop the technology required for future tests on Z.

More Details

Particle-in-cell study of the ion-to-electron sheath transition

Physics of Plasmas

Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.; Barnat, Edward V.

The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within Te/2e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electron sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. The flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.

More Details

The onset of plasma potential locking

Physics of Plasmas

Hopkins, Matthew M.; Yee, Benjamin T.; Baalrud, Scott D.; Barnat, Edward V.

In this paper, we provide insight into the role and impact that a positively biased electrode (anode) has on bulk plasma potential. Using two-dimensional Particle-in-Cell simulations, we investigate the plasma potential as an anode transitions from very small ("probe" mode) to large ("locking" mode). Prior theory provides some guidance on when and how this transition takes place. Initial experimental results are also compared. The simulations demonstrate that as the surface area of the anode is increased transitions in plasma potential and sheath polarity occur, consistent with experimental observations and theoretical predictions. It is expected that understanding this basic plasma behavior will be of interest to basic plasma physics communities, diagnostic developers, and plasma processing devices where control of bulk plasma potential is important.

More Details

Theory of the electron sheath and presheath

Physics of Plasmas

Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; Hopkins, Matthew M.; Barnat, Edward V.

Electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperature plasma conditions (Te 蠑 Ti), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.

More Details

A microwave resonance diagnostic for measuring characteristics of pulsed ion beams

Proceedings of the 2014 IEEE International Power Modulator and High Voltage Conference, IPMHVC 2014

Laity, George R.; Barnat, Edward V.

This paper describes an experiment to characterize ions generated by a pulsed vacuum arc by using a microwave resonant cavity (MRC) as a transient diagnostic. Specific information is desired on the various species which can drift into the beam during repetitive operations of arc plasma generation. The arc source reference voltage is elevated above ground (∼200V), which results in a separation of ion species in the beam due to the acceleration experienced by the ions. The cylindrical MRC used in this study has a resonant frequency of ∼2.8 GHz when excited by a continuous RF source in the TM01 mode of operation. When the neutralized ion beam propagates through the MRC located downstream from the arc source, the resonant frequency of the MRC is shifted by the local disturbance in electric field inside the cavity due to the presence of the electron space charge in the beam. Coupled with the time-of-flight separation of various ion masses, the MRC resonance shift provides a temporally resolved measurement of beam species and density downstream from the vacuum ion source without the use of a potentially invasive diagnostic such as charge collector plates within the beam cross-section. This diagnostic technique should prove useful in a variety of pulsed ion beam studies and applications in research and industrial environments.

More Details

2D laser-collision induced fluorescence in low-pressure argon discharges

Plasma Sources Science and Technology

Barnat, Edward V.; Weatherford, B.R.

Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm-3 to 1012 e cm-3 and reduced electric fields spanning 0.1 Td to 40 Td. Finally, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

More Details

Response of the plasma to the size of an anode electrode biased near the plasma potential

Physics of Plasmas

Barnat, Edward V.; Laity, G.R.; Baalrud, S.D.

As the size of a positively biased electrode increases, the nature of the interface formed between the electrode and the host plasma undergoes a transition from an electron-rich structure (electron sheath) to an intermediate structure containing both ion and electron rich regions (double layer) and ultimately forms an electron-depleted structure (ion sheath). In this study, measurements are performed to further test how the size of an electron-collecting electrode impacts the plasma discharge the electrode is immersed in. This is accomplished using a segmented disk electrode in which individual segments are individually biased to change the effective surface area of the anode. Measurements of bulk plasma parameters such as the collected current density, plasma potential, electron density, electron temperature and optical emission are made as both the size and the bias placed on the electrode are varied. Abrupt transitions in the plasma parameters resulting from changing the electrode surface area are identified in both argon and helium discharges and are compared to the interface transitions predicted by global current balance [S. D. Baalrud, N. Hershkowitz, and B. Longmier, Phys. Plasmas 14, 042109 (2007)]. While the size-dependent transitions in argon agree, the size-dependent transitions observed in helium systematically occur at lower electrode sizes than those nominally derived from prediction. The discrepancy in helium is anticipated to be caused by the finite size of the interface that increases the effective area offered to the plasma for electron loss to the electrode.

More Details

Multi-dimensional optical and laser-based diagnostics of low-temperature ionized plasma discharges

Plasma Sources Science and Technology

Barnat, Edward V.

A review of work centered on the utilization of multi-dimensional optical diagnostics to study phenomena arising in radiofrequency plasma discharges is given. The diagnostics range from passive techniques such as optical emission to more active techniques utilizing nanosecond lasers capable of both high temporal and spatial resolution. In this review, emphasis is placed on observations that would have been more difficult, if not impossible, to make without the use of such diagnostic techniques. Examples include the sheath structure around an electrode consisting of two different metals, double layers that arise in magnetized hydrogen discharges, or a large region of depleted argon 1s4 levels around a biased probe in an rf discharge. © 2011 IOP Publishing Ltd.

More Details

Two-dimensional mapping of electron densities and temperatures using laser-collisional induced fluorescence

Plasma Sources Science and Technology

Barnat, Edward V.; Frederickson, K.

We discuss the application of the laser-collisional induced fluorescence (LCIF) technique to produce two-dimensional maps of both electron densities and electron temperatures in a helium plasma. A collisional-radiative model (CRM) is used to describe the evolution of electronic states after laser excitation. We discuss generalizations to the time dependent results which are useful for simplifying data acquisition and analysis. LCIF measurements are performed in plasma containing densities ranging from ∼109 electrons cm -3 and approaching 1011 electrons cm-3 and comparison is made between the predictions made by the CRM and the measurements. Finally, spatial and temporal evolution of an ion sheath formed during a pulse bias is measured to demonstrate this technique. © 2010 IOP Publishing Ltd.

More Details

New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements

Serrano, Justin R.; Barnat, Edward V.

We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurements with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.

More Details

Structure in RF hydrogen plasma induced by magnetic field

IEEE Transactions on Plasma Science

Barnat, Edward V.

Images of the spatial structure of a capacitively coupled hydrogen discharge are presented for various strengths of applied magnetic field. With increasing magnetic field, we find that not only does the distribution of emission change because of the confinement of the electrons by the magnetic field, but we also find "dark-bands"regions that form in the discharge. By using narrowband interference filters (∼10 nm bandwidth), we examine how the relative optical emission centered on Hα and Hβ (with respect to the total optical emission) change with the applied magnetic field. © 2008 IEEE.

More Details

Frequency dependent plasma characteristics in a capacitively coupled 300 mm wafer plasma processing chamber

Plasma Sources Science and Technology

Hebner, Gregory A.; Barnat, Edward V.; Miller, Paul A.; Paterson, Alex M.; Holland, John P.

Argon plasma characteristics in a dual-frequency, capacitively coupled, 300 mm-wafer plasma processing system were investigated for rf drive frequencies between 10 and 190 MHz. We report spatial and frequency dependent changes in plasma parameters such as line-integrated electron density, ion saturation current, optical emission and argon metastable density. For the conditions investigated, the line-integrated electron density was a nonlinear function of drive frequency at constant rf power. In addition, the spatial distribution of the positive ions changed from uniform to peaked in the centre as the frequency was increased. Spatially resolved optical emission increased with frequency and the relative optical emission at several spectral lines depended on frequency. Argon metastable density and spatial distribution were not a strong function of drive frequency. Metastable temperature was approximately 400 K. © 2006 IOP Publishing Ltd.

More Details

Spatial and frequency dependence of plasma currents in a 300 mm capacitively coupled plasma reactor

Plasma Sources Science and Technology

Miller, Paul A.; Barnat, Edward V.; Hebner, Gregory A.; Paterson, Alex M.; Holland, John P.

There is much interest in scaling rf-excited capacitively coupled plasma reactors to larger sizes and to higher frequencies. As the size approaches operating wavelength, concerns arise about non-uniformity across the work piece, particularly in light of the well-documented slow-surface-wave phenomenon. We present measurements and calculations of spatial and frequency dependence of rf magnetic fields inside argon plasma in an industrially relevant, 300 mm plasma-processing chamber. The results show distinct differences in the spatial distributions and harmonic content of rf fields in the plasma at the three frequencies studied (13.56, 60 and 176 MHz). Evidence of a slow-wave structure was not apparent. The results suggest that interaction between the plasma and the rf excitation circuit may strongly influence the structures of these magnetic fields and that this interaction is frequency dependent. At the higher frequencies, wave propagation becomes extremely complex; it is controlled by the strong electrical nonlinearity of the sheath and is not explained simply by previous models. © 2006 IOP Publishing Ltd.

More Details

Plasma non-uniformities induced by dissimilar electrode

Proposed for publication in the Journal of Applied Physics.

Barnat, Edward V.; Hebner, Gregory A.

Nonuniformities in both sheath electric field and plasma excitation were observed around dissimilar metals placed on a rf electrode. Spatial maps of the rf sheath electric field obtained by laser-induced fluorescence-dip (LIF-dip) spectroscopy show that the sheath structure was a function of the electrode metal. In addition to the electric-field measurements, LIF, optical emission, and Langmuir probe measurements show nonuniform excitation around the dissimilar metals. The degree and spatial extent of the discharge nonuniformities were dependent on discharge conditions and the history of the metal surfaces.

More Details

Potentials and fields in a 300-mm dual-frequency reactor

Miller, Paul A.; Barnat, Edward V.; Hebner, Gregory A.

Dual-frequency reactors employ source rf power supplies to generate plasma and bias supplies to extract ions. There is debate over choices for the source and bias frequencies. Higher frequencies facilitate plasma generation but their shorter wavelengths may cause spatial variations in plasma properties. Electrical nonlinearity of plasma sheaths causes harmonic generation and mixing of source and bias frequencies. These processes, and the resulting spectrum of frequencies, are as much dependent on electrical characteristics of matching networks and on chamber geometry as on plasma sheath properties. We investigated such electrical effects in a 300-mm Applied-Materials plasma reactor. Data were taken for 13.56-MHz bias frequency (chuck) and for source frequencies from 30 to 160 MHz (upper electrode). An rf-magnetic-field probe (B-dot loop) was used to measure the radial variation of fields inside the plasma. We will describe the results of this work.

More Details

Radiofrequency sheath formation and excitation around a stepped electrode

Proposed for publication in the Journal of Applied Physics.

Barnat, Edward V.; Hebner, Gregory A.

Plasma and sheath structure around a rf excited stepped electrode is investigated. Laser-induced fluorescence dip spectroscopy is used to spatially resolve sheath fields in an argon discharge while optical emission and laser-induced fluorescence are used to measure the spatial structure of the surrounding discharge for various discharge conditions and step-junction configurations. The presence of the step perturbs the spatial structure of the fields around the step as well as the excitation in the region above the step.

More Details

Radiofrequency sheath fields at a metal-dielectric interface

Proposed for publication in the Journal of Applied Physics.

Barnat, Edward V.; Hebner, Gregory A.

Two-dimensional maps of the sheath electric fields formed around a metal-dielectric interface were measured in a radio frequency (rf) argon plasma using laser-induced fluorescence-dip spectroscopy. Experimentally determined Stark shifts of the argon Rydberg 13d[3/2]1 state were used to quantify the electric fields in the sheath as functions of the rf cycle, voltage, and pressure. Both the structure of the sheath fields and the discharge characteristics in the region above the electrode depend on the discharge conditions and the configuration of the surface. Dissimilar materials placed adjacent to each other result in electric fields with a component parallel to the electrode surface.

More Details

Two dimensional profiles of electric fields in a radio-frequency argon plasma above non-uniformities present on a surface

Proposed for publication in the Fourth Triennial Special Issue of the IEEE Transactions on Plasma Science.

Barnat, Edward V.; Hebner, Gregory A.

Laser-induced fluorescence-dip spectroscopy was used to measure two-dimensional (2-D) maps of the electric field present in an argon discharge above a ratio frequency-powered, nonuniform surface. Electric fields were obtained from experimentally measured Stark shifts of the energy of argon Rydberg states. The 2-D maps of the electric fields demonstrated that nonuniformities present on an electrode have long-range effects on the structure of the sheath.

More Details
138 Results
138 Results