Publications

15 Results
Skip to search filters

Ion current losses in the convolute and inner magnetically insulated transmission line of the Z machine

Physical Review Accelerators and Beams

Waisman, Eduardo M.; Desjarlais, Michael P.; Cuneo, M.E.

We introduce a 1D planar static model to elucidate the underlying mechanism of large ion current losses in the vacuum convolute and the inner magnetically insulated transmission line (MITL) of the Z machine. We consider E × B electron flow, parallel to the electrodes, and ion motion across the vacuum gap, for given voltage V, gap distance d, anode magnetic field B a, and vacuum electron current Δ I. This model has been introduced and solved before by Desjarlais [Phys. Rev. Lett. 59, 2295 (1987)] for the applied magnetic field ion diode. Here we apply it to convolute and inner MITL ion losses of Z, relaxing the fix magnetic flux condition of that reference. In the absence of ions we show that the electron vacuum flow must be close to the anode if its current exceeds the value given by the local flow impedance, implying high electric fields there. We then introduce space charge limited ion emission from the anode, neglecting the magnetic force on ions. We obtain the solution of the steady state equations for two special cases: (a) when both the electric potential and the electric field are zero inside the gap, and there is a layer of electrons not carrying current that neutralizes the ion charge between the virtual and the electrode cathode, making that region electric field free, and (b) when the electric field is zero inside the gap, but the potential is not, and zero electron charge between that point and the physical cathode. For case (a) we obtain an ion current density which we conjecture is the maximum attainable for any electron charge distribution in the electron current carrying layer, given V, d, Ba, Δ I an ion species. We obtain the enhancement factor for both cases with respect to the ion-only Child-Langmuir ion current density, and show that it can be significantly larger than that of the electron saturated flow case. Furthermore, imposing electron current conservation as the flow enters the inner MITL from the four outer MITLs, we recover the well-known dependence jion ~ V3/2 / d2, where voltage and gap are taken near the joining point of those outer MITLs. The implications and limitations of the proposed model are discussed.

More Details

Recent Diagnostic Platform Accomplishments for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator

Laity, George R.; Aragon, Carlos A.; Bennett, Nichelle L.; Bliss, David E.; Dolan, Daniel H.; Fierro, Andrew S.; Gomez, Matthew R.; Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Johnston, Mark D.; Kossow, Michael R.; Lamppa, Derek C.; Martin, Matthew; Patel, Sonal P.; Porwitzky, Andrew J.; Robinson, Allen C.; Rose, David V.; VanDevender, Pace V.; Waisman, Eduardo M.; Webb, Timothy J.; Welch, Dale R.; Rochau, G.A.; Savage, Mark E.; Stygar, William S.; White, William M.; Sinars, Daniel S.; Cuneo, M.E.

Abstract not provided.

Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

Physical Review Accelerators and Beams

Hutsel, Brian T.; Corcoran, Patrick A.; Cuneo, M.E.; Gomez, Matthew R.; Hess, Mark H.; Hinshelwood, D.D.; Jennings, C.A.; Laity, G.R.; Lamppa, Derek C.; McBride, Ryan D.; Moore, James M.; Myers, A.; Rose, D.V.; Slutz, S.A.; Stygar, William A.; Waisman, Eduardo M.; Welch, Dale R.; Whitney, B.A.

We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.

More Details

Optimization of Isentropic Compression Loads on Current-Adder Pulsed Power Accelerator Architectures

Reisman, David R.; Waisman, Eduardo M.; Stoltzfus, Brian S.; Stygar, William A.; Cuneo, M.E.; Haill, Thomas H.; Davis, Jean-Paul D.; Brown, Justin L.; Seagle, Christopher T.; Spielman, Rick S.

The Thor pulsed power generator is being developed at Sandia National Laboratories . The design consists of up to 288 decoupled an d transit time isolated ca pacitor - switch units , called "bricks" , that can be individually triggered to achieve a high degree of p ulse tailoring for magnetically - driven isentropic compression experiments (ICE). The connecting transmission lines are impedance matched to the bricks, a llowing the capacitor energy to be efficiently delivered to an ICE strip - line load with pe ak pressures of over 100 GPa . Thor will drive experiments to expl ore equation of state, material strength, and phase transition properties of a wide variety of materi als. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator . This technique, which is unique to the novel "current - adder" architecture used by Thor, entirely avoids the itera tive use of complex circuit models to converge to the desired electrical pulse . We describe the optimization procedure for the Thor design and show results for various materials of interest. Also, we discuss the extension of these concepts to the megajoule - class Neptune machine design. Given this design, we are able to design shockless ramp - driven experiments in the 1 TPa range of material pressure.

More Details

Conceptual design of a 10 13 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

Physical Review Accelerators and Beams

Stygar, William A.; Reisman, David R.; Stoltzfus, Brian S.; Austin, Kevin N.; Benage, John F.; Breden, E.W.; Cooper, R.A.C.; Cuneo, M.E.; Davis, Jean-Paul D.; Ennis, J.B.E.; Gard, Paul D.; Greiser, G.W.G.; Gruner, Frederick R.; Haill, Thomas A.; Hutsel, Brian T.; Jones, Peter A.; LeChien, K.R.L.; Leckbee, Joshua L.; Lucero, Diego J.; McKee, George R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Root, Seth R.; Savage, Mark E.; Sceiford, Matthew S.; Spielman, R.B.S.; Waisman, Eduardo M.; Wisher, Matthew L.

In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.

More Details

Pulsed power accelerator for material physics experiments

Physical Review Special Topics - Accelerators and Beams

Reisman, David R.; Stoltzfus, Brian S.; Stygar, William A.; Austin, Kevin N.; Waisman, Eduardo M.; Hickman, Randy J.; Davis, Jean-Paul D.; Haill, Thomas A.; Knudson, Marcus D.; Seagle, Christopher T.; Brown, Justin L.; Goerz, D.A.; Spielman, R.B.; Goldlust, J.A.; Cravey, W.R.

We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

More Details

2-D RMHD modeling assessment of current flow, plasma conditions, and doppler effects in recent Z argon experiments

IEEE Transactions on Plasma Science

Thornhill, J.W.; Giuliani, John L.; Jones, Brent M.; Apruzese, John P.; Dasgupta, Arati; Chong, Young K.; Harvey-Thompson, Adam J.; Ampleford, David A.; Hansen, Stephanie B.; Coverdale, Christine A.; Jennings, Christopher A.; Rochau, G.A.; Cuneo, M.E.; Lamppa, Derek C.; Johnson, Drew J.; Jones, Michael J.; Moore, Nathan W.; Waisman, Eduardo M.; Krishnan, Mahadevan; Coleman, Philip L.

By varying current-loss circuit parameters, the Mach2-tabular collisional radiative equilibrium 2-D radiation magnetohydrodynamic model was tuned to reproduce the radiative and electrical properties of three recent argon gas-puff experiments (same initial conditions) performed on the Z machine at Sandia National Laboratories. The model indicates that there were current losses occurring near or within the diode region of the Z machine during the stagnation phase of the implosion. The 'good' simulation reproduces the experimental K-shell powers, K-shell yields, total powers, percentage of emission radiated in α lines, size of the K-shell emission region, and the average electron temperature near the time-of-peak K-shell power. The calculated atomic populations, ion temperatures, and radial velocities are used as input to a detailed multifrequency ray-trace radiation transport model that includes the Doppler effect. This model is employed to construct time-, space-, and energy-resolved synthetic spectra. The role the Doppler effect likely plays in the experiments is demonstrated by comparing synthetic spectra generated with and without this effect.

More Details

Investigating the Effects of Adding a Center jet to Argon gas puff implosions at the Z facility

Harvey-Thompson, Adam J.; Jennings, Christopher A.; Jones, Brent M.; Ampleford, David A.; Hansen, Stephanie B.; Lamppa, Derek C.; Cuneo, M.E.; Reneker, Joseph R.; Johnson, Drew J.; Jones, Michael J.; Moore, Nathan W.; Flanagan, Timothy M.; Mckenney, John M.; Rochau, G.A.; Waisman, Eduardo M.; Coverdale, Christine A.; Apruzese, J.P.A.; Thornhill, J.W.T.; Giuliani, J.L.G.

Abstract not provided.

The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions

Physics of Plasmas

Jones, Brent M.; Apruzese, J.P.; Harvey-Thompson, Adam J.; Ampleford, David A.; Jennings, C.A.; Hansen, Stephanie B.; Moore, Nathan W.; Lamppa, Derek C.; Johnson, Drew J.; Jones, Brent M.; Waisman, Eduardo M.; Coverdale, Christine A.; Cuneo, M.E.; Rochau, G.A.; Giuliani, J.L.; Thornhill, J.W.; Ouart, N.D.; Chong, Y.K.; Velikovich, A.L.; Dasgupta, A.; Krishnan, M.; Coleman, P.L.

Argon gas puffs have produced 330kJ ± 9% of x-ray radiation above 3keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.

More Details

Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

Review of Scientific Instruments

Rovang, Dean C.; Lamppa, Derek C.; Cuneo, M.E.; Owen, A.C.; Mckenney, John M.; Johnson, Drew J.; Radovich, S.; Kaye, Ronald J.; McBride, Ryan D.; Alexander, Charles S.; Awe, T.J.; Slutz, S.A.; Sefkow, Adam B.; Haill, Thomas A.; Jones, Peter A.; Argo, J.W.; Dalton, D.G.; Robertson, Grafton K.; Waisman, Eduardo M.; Sinars, Daniel S.; Meissner, J.; Milhous, M.; Nguyen, D.N.; Mielke, C.H.

Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

More Details

Scaling of high-mass tungsten-wire-array z-pinch discrete-wire implosion dynamics at 20 MA

Proposed for publication in Physical Review Letters.

Cuneo, M.E.; Yu, Edmund Y.; Garasi, Christopher J.; Oliver, Bryan V.; Aragon, Rafael A.; Bliss, David E.; Lazier, Steven E.; Mehlhorn, Thomas A.; Nielsen, D.S.; Sarkisov, Gennady S.; Cuneo, M.E.; Vesey, Roger A.; Wagoner, Tim C.; Chandler, Gordon A.; Waisman, Eduardo M.; Stygar, William A.; Nash, Thomas J.; Yu, Edmund Y.

Abstract not provided.

15 Results
15 Results