Plasma formation from intensely ohmically heated conductors is known to be highly non-uniform, as local overheating can be driven by micron-scale imperfections. Detailed understanding of plasma formation is required to predict the performance of magnetically driven physics targets and magnetically-insulated transmission lines (MITLs). Previous LDRD-supported work (projects 178661 and 200269) developed the electrothermal instability (ETI) platform, on the Mykonos facility, to gather high-resolution images of the self-emission from the non-uniform ohmic heating of z-pinch rods. Experiments studying highly inhomogeneous alloyed aluminum captured complex heating topography. To enable detailed comparison with magnetohydrodynamic (MHD) simulation, 99.999% pure aluminum rods in a z-pinch configuration were diamond-turned to ~10nm surface roughness and then further machined to include well-characterized micron-scale "engineered" defects (ED) on the rod's surface (T.J. Awe, et al., Phys. Plasmas 28, 072104 (2021)). In this project, the engineered defect hardware and diagnostic platform were used to study ETI evolution and non-uniform plasma formation from stainless steel targets. The experimental objective was to clearly determine what, if any, role manufacturing, preparation, or alloy differences have in encouraging nonuniform heating and plasma formation from high-current density stainless steel. Data may identify improvements that may be implemented in the fabrication/preparation of electrodes used on the Z machine. Preliminary data shows that difference in manufacturer has no observed effect on ETI evolution, stainless alloy 304L heated more uniformly than alloy 310 at similar current densities, and that stainless steel undergoes the same evolutionary ETI stages as ultra-pure aluminum, with increased emission tied to areas of elevated surface roughness.
Magnetically driven implosions (MDIs) on the Z Facility assemble high-energy-density plasmas for radiation effects and ICF experiments. MDIs are hampered by the Magneto-Rayleigh-Taylor (MRT) instability, which can grow to large amplitude from a small seed perturbation, limiting achievable stagnation pressures and temperatures. The metallic liners used in Magnetized Liner Inertial Fusion (MagLIF) experiments include astonishingly small (-10 nm RMS) initial surface roughness perturbations; nevertheless, unexpectedly large MRT amplitudes are observed in experiments. An electrothermal instability (ETI) may provide a perturbation which exceeds the initial surface roughness. For a condensed metal resistivity increases with temperature. Locations of higher resistivity undergo increased Ohmic heating, resulting in locally higher temperature, and thus still higher resistivity. Such unstable temperature (and pressure) growth produces density perturbations when the locally overheated metal changes phase, providing the seed perturbation for MRT growth. ETI seeding of MRT on thick conductors carrying current in a skin layer has thus far only been inferred by evaluating MRT amplitude late in the experiment. A direct observation of ETI is vital to ensure our simulation tools are accurately representing the seed of the deleterious MRT instability. In this LDRD project, ETI growth was directly observed on the surface of 1.0-mm-diameter solid Al rods which were pulsed with 1 MA of current in 100 ns. Fine structures resulting from ETI-driven temperature variations were observed directly through high resolution gated optical imaging. Data from two Aluminum alloys (6061 and 5N) and a variety fabrication techniques (conventional machining, single-point diamond turned, electropolished) enable evaluation of which imperfections provide a seed for ETI growth and subsequent plasma initiation. Data is relevant to the early stages of MagLIF liner implosions, when the ETI seed of MRT may be initiated, and provides a fundamentally new dataset with which to test our state-of-the-art simulation tools.
Fast z-pinches provide intense 1-10 keV photon energy radiation sources. Here, we analyze time-, space-, and spectrally-resolved {approx}2 keV K-shell emissions from Al (5% Mg) wire array implosions on Sandia's Z machine pulsed power driver. The stagnating plasma is modeled as three separate radial zones, and collisional-radiative modeling with radiation transport calculations are used to constrain the temperatures and densities in these regions, accounting for K-shell line opacity and Doppler effects. We discuss plasma conditions and dynamics at the onset of stagnation, and compare inferences from the atomic modeling to three-dimensional magneto-hydrodynamic simulations.