First-principles flocculation as the key to low energy algal biofuels processing
Abstract not provided.
Abstract not provided.
Abstract not provided.
The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.
Abstract not provided.
Abstract not provided.
Abstract not provided.
To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in nanostructures and, eventually, integrated nanocomponents.
This report summarizes the major research and development accomplishments for the late start LDRD project (investment area: Enable Predictive Simulation) entitled 'Atomically Engineering Cu/Ta Interfaces'. Two ultimate goals of the project are: (a) use atomistic simulation to explore important atomistic assembly mechanisms during growth of Cu/Ta multilayers; and (b) develop a non-continuum model that has sufficient fidelity and computational efficiency for use as a design tool. Chapters 2 and 3 are essentially two papers that address respectively these two goals. In chapter 2, molecular dynamics simulations were used to study the growth of Cu films on (010) bcc Ta and Cu{sub x}Ta{sub 1-x} alloy films on (111) fcc Cu. The results indicated that fcc crystalline Cu films with a (111) texture are always formed when Cu is grown on Ta. The Cu films are always polycrystalline even when the Ta substrate is single crystalline. These polycrystalline films are composed of grains with only two different orientations, which are separated by either orientational grain boundaries or misfit dislocations. Periodic misfit dislocations and stacking fault bands are observed. The Cu film surface roughness was found to decrease with increasing adatom energy. Due to a Cu surface segregation effect, the Cu{sub x}Ta{sub 1-x} films deposited on Cu always have a higher Cu composition than that used in the vapor mixture. When Cu and Ta compositions in the films are comparable, amorphous structures may form. The fundamental origins for all these phenomena have been studied in terms of crystallography and interatomic interactions. In chapter 3, a simplified computational method, diffusional Monte Carlo (dMC) method, was developed to address long time kinetic processes of materials. Long time kinetic processes usually involve material transport by diffusion. The corresponding microstructural evolution of materials can be analyzed by kinetic Monte Carlo simulation methods, which essentially simulate structural evolution by tracing each atomic jump. However, if the simulation is carried out at a high temperature, or a jump mechanism with a very low energy barrier is encountered, the jump frequency may approach the atom vibration frequency, and the computational efficiency of the kinetic Monte Carlo method rapidly decreases to that of a molecular dynamics simulation. The diffusional Monte Carlo method addresses the net effects of many atom jumps over a finite duration, kinetically controlled process. First, atom migration due to both random and non-random jumps is discussed. The concept of dMC is then introduced for random jump diffusion. The validity of the method is demonstrated using several diffusion cases in one-, two- and three-dimensional spaces, including the dissolution of spinodal structures. The application of the non-random diffusion theory to spinodal decomposition is also demonstrated.
Mathematics and Mechanics of Solids
Abstract not provided.
Physical Review B
Abstract not provided.
Acta Materialia
Abstract not provided.
Abstract not provided.
Abstract not provided.
Active cooling of electronic systems for space-based and terrestrial National Security missions has demanded use of Stirling, reverse-Brayton, closed Joule-Thompson, pulse tube and more elaborate refrigeration cycles. Such cryocoolers are large systems that are expensive, demand large powers, often contain moving parts and are difficult to integrate with electronic systems. On-chip, solid-state, active cooling would greatly enhance the capabilities of future systems by reducing the size, cost and inefficiencies compared to existing solutions. We proposed to develop the technology for a thermoelectric cooler capable of reaching 77K by replacing bulk thermoelectric materials with arrays of Bi{sub 1-x}Sb{sub x} nanowires. Furthermore, the Sandia-developed technique we will use to produce the oriented nanowires occurs at room temperature and can be applied directly to a silicon substrate. Key obstacles include (1) optimizing the Bi{sub 1-x}Sb{sub x} alloy composition for thermoelectric properties; (2) increasing wire aspect ratios to 3000:1; and (3) increasing the array density to {ge} 10{sup 9} wires/cm{sup 2}. The primary objective of this LDRD was to fabricate and test the thermoelectric properties of arrays of Bi{sub 1-x}Sb{sub x} nanowires. With this proof-of-concept data under our belts we are positioned to engage National Security systems customers to invest in the integration of on-chip thermoelectric coolers for future missions.
Abstract not provided.
Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.
Langmuir
Molecular dynamics simulations are used to study the spreading of binary polymer nanodroplets in a cylindrical geometry. The polymers, described by the bead-spring model, spread on a flat surface with a surface-coupled Langevin thermostat to mimic the effects of a corrugated surface. Each droplet consists of chains of length 10 or 100 monomers with ∼350 000 monomers total. The qualitative features of the spreading dynamics are presented for differences in chain length, surface interaction strength, and composition. When the components of the droplet differ only in the surface interaction strength, the more strongly wetting component forms a monolayer film on the surface even when both materials are above or below the wetting transition. In the case where the only difference is the polymer chain length, the monolayer film beneath the droplet is composed of an equal amount of short chain and long chain monomers even when one component (the shorter chain length) is above the wetting transition and the other is not. The fraction of short and long chains in the precursor foot depends on whether both the short and the long chains are in the wetting regime. Diluting the concentration of the strongly wetting component in a mixture with a weakly wetting component decreases the rate of diffusion of the wetting material from the bulk to the surface and limits the spreading rate of the precursor foot, but the bulk spreading rate actually increases when both components are present. This may be due to the strongly wetting material pushing out the weakly wetting material as it moves toward the precursor foot. © 2005 American Chemical Society.
Acta Materialia
Reactive wetting in the eutectic AgCu system is studied with molecular dynamics simulations. As Ag(l) spreads on the Cu surface, Cu dissolves into the liquid. The results for reactive wetting are compared to simulations in which no mixing is permitted, demonstrating that wetting kinetics are enhanced by dissolution reactions. The time dependent radius of the droplet R(t) is used to quantify kinetics for the wetting geometry of an infinitely long cylinder spreading on a substrate. Data show that, when dissolution is dominant, spreading is well described by R(t) ∼ (R0t)1/2, where R0 is the starting cylinder radius. Contact angle θ(t) data were calculated via a method that accounts for structure near the contact region and compared to data obtained using circular fits to the droplet profile. Significant differences were observed due to molecular scale structure that rapidly evolves near the contact line. This structure exhibits markedly lower θ than what is predicted from droplet profile data and it is proposed to exist throughout most stages of dissolutive wetting. Simulations of AgCu binary liquids spreading on Cu demonstrate that wetting kinetics decrease with increasing Cu in the liquid, further emphasizing that wetting kinetics are intrinsically linked to dissolution kinetics. After dissolution is complete, a Ag-rich monolayer of atoms advances diffusively across the Cu surface. © 2005 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
Proposed for publication in Langmuir.
In this study, we perform molecular dynamics simulations of adhesive contact and friction between alkylsilane Si(OH){sub 3}(CX{sub 2}){sub 10}CX{sub 3} and alkoxylsilane Si(OH){sub 2}(CX{sub 2}){sub 10}CX{sub 3} (where X = H or F) self-assembled monolayers (SAMs) on an amorphous silica substrate. The alkylsilane SAMs are primarily hydrogen-bonded or physisorbed to the surface. The alkoxylsilane SAMs are covalently bonded or chemisorbed to the surface. Previously, we studied the chemisorbed systems. In this work, we study the physisorbed systems and compare the tribological properties with the chemisorbed systems. Furthermore, we examine how water at the interface of the SAMs and substrate affects the tribological properties of the physisorbed systems. When less than a third of a monolayer is present, very little difference in the microscopic friction coefficient {mu} or shear stresses is observed. For increasing amounts of water, the values of {mu} and the shear stresses decrease; this effect is somewhat more pronounced for fluorocarbon alkylsilane SAMs than for the hydrocarbon SAMs. The observed decrease in friction is a consequence of a slip plane that occurs in the water as the amount of water is increased. We studied the frictional behavior using relative shear velocities ranging from v = 2 cm/s to 2 m/s. Similar to previously reported results for alkoxylsilane SAMs, the values of the measured stress and {mu} for the alkylsilane SAM systems decrease monotonically with v.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Tribology Letters
Abstract not provided.
This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.
Proposed for publication in Interface Science.
Atomistic simulations were performed to investigate high temperature wetting phenomena for metals. A sessile drop configuration was modeled for two systems: Ag(l) on Cu and Pb(l) on Cu. The former case is an eutectic binary and the wetting kinetics were greatly enhanced by the presence of aggressive interdiffusion between Ag and Cu. Wetting kinetics were directly dependent upon dissolution kinetics. The dissolution rate was nearly identical for Ag(l) on Cu(100) compared to Cu(111); as such, the spreading rate was very similar on both surfaces. Pb and Cu are bulk immiscible so spreading of Pb(l) on Cu occurred in the absence of significant substrate dissolution. For Pb(l) on Cu(111) a precursor wetting film of atomic thickness emerged from the partially wetting liquid drop and rapidly covered the surface. For Pb(l) on Cu(100), a foot was also observed to emerge from a partially wetting drop; however, spreading kinetics were dramatically slower for Pb(l) on Cu(100) than on Cu(111). For the former, a surface alloying reaction was observed to occur as the liquid wet the surface. The alloying reaction was associated with dramatically decreased wetting kinetics on Cu(100) versus Cu(111), where no alloying was observed. These two cases demonstrate markedly different atomistic mechanisms of wetting where, for Ag(l) on Cu, the dissolution reaction is associated with increased wetting kinetics while, for Pb(l) on Cu, the surface alloying reaction is associated with decreased wetting kinetics.