Publications

10 Results
Skip to search filters

A constant entropy increase model for the selection of parallel tempering ensembles

Journal of Chemical Physics

Sabo, Dubravko S.; Meuwly, Markus; Freeman, David L.; Doll, J.D.

The present paper explores a simple approach to the question of parallel tempering temperature selection. We argue that to optimize the performance of parallel tempering it is reasonable to require that the increase in entropy between successive temperatures be uniform over the entire ensemble. An estimate of the system's heat capacity, obtained either from experiment, a preliminary simulation, or a suitable physical model, thus provides a means for generating the desired tempering ensemble. Applications to the two-dimensional Ising problem indicate that the resulting method is effective, simple to implement, and robust with respect to its sensitivity to the quality of the underlying heat capacity model. © 2008 American Institute of Physics.

More Details

Studies of the thermodynamic properties of hydrogen gas in bulk water

Journal of Physical Chemistry B

Sabo, Dubravko S.; Varma, Sameer V.; Martin, Marcus G.; Rempe, Susan B.

The thermodynamic properties of hydrogen gas in liquid water are investigated using Monte Carlo molecular simulation and the quasichemical theory of liquids. The free energy of hydrogen hydration obtained by Monte Carlo simulations agrees well with the experimental result, indicating that the classical force fields used in this work provide an adequate description of intermolecular interactions in the aqueous hydrogen system. Two estimates of the hydration free energy for hydrogen made within the framework of the quasichemical theory also agree reasonably well with experiment provided local anharmonic motions and distant interactions with explicit solvent are treated. Both quasichemical estimates indicate that the hydration free energy results from a balance between chemical association and molecular packing. Additionally, the results suggest that the molecular packing term is almost equally driven by unfavorable enthalpic and entropie components. © 2008 American Chemical Society.

More Details

Fuel traps: mapping stability via water association

Sabo, Dubravko S.; Greathouse, Jeffery A.; Leung, Kevin L.; Cygan, Randall T.; Alam, Todd M.; Varma, Sameer V.; Martin, Marcus G.

Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

More Details

Molecular studies of the structural properties of hydrogen gas in bulk water

Proposed for publication in the Molecular Simulation Journal.

Rempe, Susan R.; Sabo, Dubravko S.; Greathouse, Jeffery A.; Martin, Marcus G.

We report on our studies of the structural properties of a hydrogen molecule dissolved in liquid water. The radial distribution function, coordination number and coordination number distribution are calculated using different representations of the interatomic forces within molecular dynamics (MD), Monte Carlo (MC) and ab initio molecular dynamics (AIMD) simulation frameworks. Although structural details differ in the radial distribution functions generated from the different force fields, all approaches agree that the average and most probable number of water molecules occupying the inner hydration sphere around hydrogen is 16. Furthermore, all results exclude the possibility of clathrate-like organization of water molecules around the hydrophobic molecular hydrogen solute.

More Details
10 Results
10 Results