Publications

89 Results
Skip to search filters

Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk

Reliability Engineering and System Safety

Jakeman, John D.; Kouri, Drew P.; Huerta, Jose G.

We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. Risk measures combine objective probabilities with the subjective values of a decision maker to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical approximations obtained from the training data. These surrogate models limit over-confidence in reliability and safety assessments and produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to a stakeholder's risk preferences and then present an approach, based on stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. Our surrogate models include biases that permit them to conservatively estimate the target risk measures. We provide theoretical results that show that these biases decay at the same rate as the L2 error in the surrogate model. Numerical demonstrations confirm that risk-adapted surrogate models do indeed overestimate the target risk measures while converging at the expected rate.

More Details

A primal–dual algorithm for risk minimization

Mathematical Programming

Kouri, Drew P.; Surowiec, Thomas M.

In this paper, we develop an algorithm to efficiently solve risk-averse optimization problems posed in reflexive Banach space. Such problems often arise in many practical applications as, e.g., optimization problems constrained by partial differential equations with uncertain inputs. Unfortunately, for many popular risk models including the coherent risk measures, the resulting risk-averse objective function is nonsmooth. This lack of differentiability complicates the numerical approximation of the objective function as well as the numerical solution of the optimization problem. To address these challenges, we propose a primal–dual algorithm for solving large-scale nonsmooth risk-averse optimization problems. This algorithm is motivated by the classical method of multipliers and by epigraphical regularization of risk measures. As a result, the algorithm solves a sequence of smooth optimization problems using derivative-based methods. We prove convergence of the algorithm even when the subproblems are solved inexactly and conclude with numerical examples demonstrating the efficiency of our method.

More Details

Risk-Adaptive Experimental Design for High-Consequence Systems: LDRD Final Report

Kouri, Drew P.; Jakeman, John D.; Huerta, Jose G.; Walsh, Timothy W.; Smith, Chandler B.; Uryasev, Stan U.

Constructing accurate statistical models of critical system responses typically requires an enormous amount of data from physical experiments or numerical simulations. Unfortunately, data generation is often expensive and time consuming. To streamline the data generation process, optimal experimental design determines the 'best' allocation of experiments with respect to a criterion that measures the ability to estimate some important aspect of an assumed statistical model. While optimal design has a vast literature, few researchers have developed design paradigms targeting tail statistics, such as quantiles. In this project, we tailored and extended traditional design paradigms to target distribution tails. Our approach included (i) the development of new optimality criteria to shape the distribution of prediction variances, (ii) the development of novel risk-adapted surrogate models that provably overestimate certain statistics including the probability of exceeding a threshold, and (iii) the asymptotic analysis of regression approaches that target tail statistics such as superquantile regression. To accompany our theoretical contributions, we released implementations of our methods for surrogate modeling and design of experiments in two complementary open source software packages, the ROL/OED Toolkit and PyApprox.

More Details

Surrogate Modeling For Efficiently Accurately and Conservatively Estimating Measures of Risk

Jakeman, John D.; Kouri, Drew P.; Huerta, Jose G.

We present a surrogate modeling framework for conservatively estimating measures of risk from limited realizations of an expensive physical experiment or computational simulation. We adopt a probabilistic description of risk that assigns probabilities to consequences associated with an event and use risk measures, which combine objective evidence with the subjective values of decision makers, to quantify anticipated outcomes. Given a set of samples, we construct a surrogate model that produces estimates of risk measures that are always greater than their empirical estimates obtained from the training data. These surrogate models not only limit over-confidence in reliability and safety assessments, but produce estimates of risk measures that converge much faster to the true value than purely sample-based estimates. We first detail the construction of conservative surrogate models that can be tailored to the specific risk preferences of the stakeholder and then present an approach, based upon stochastic orders, for constructing surrogate models that are conservative with respect to families of risk measures. The surrogate models introduce a bias that allows them to conservatively estimate the target risk measures. We provide theoretical results that show that this bias decays at the same rate as the L2 error in the surrogate model. Our numerical examples confirm that risk-aware surrogate models do indeed over-estimate the target risk measures while converging at the expected rate.

More Details

Parallel Solver Framework for Mixed-Integer PDE-Constrained Optimization

Phillips, Cynthia A.; Chatter, Michelle A.; Eckstein, Jonathan E.; Erturk, Alper E.; El-Kady, I.; Gerbe, Romain G.; Kouri, Drew P.; Loughlin, William L.; Reinke, Charles M.; Rokkam, Rohith R.; Ruzzene, Massimo R.; Sugino, Chris S.; Swanson, Calvin S.; van Bloemen Waanders, Bart G.

ROL-PEBBL is a C++, MPI-based parallel code for mixed-integer PDE-constrained optimization (MIPDECO). In these problems we wish to optimize (control, design, etc.) physical systems, which must obey the laws of physics, when some of the decision variables must take integer values. ROL-PEBBL combines a code to efficiently search over integer choices (PEBBL = Parallel Enumeration Branch-and-Bound Library) and a code for efficient nonlinear optimization, including PDE-constrained optimization (ROL = Rapid Optimization Library). In this report, we summarize the design of ROL-PEBBL and initial applications/results. For an artificial source-inversion problem, finding sources of pollution on a grid from sparse samples, ROL-PEBBLs solution for the nest grid gave the best optimization guarantee for any general solver that gives both a solution and a quality guarantee.

More Details

Randomized sketching algorithms for low-memory dynamic optimization

SIAM Journal on Optimization

Muthukumar, Ramchandran; Kouri, Drew P.; Udell, Madeleine

This paper develops a novel limited-memory method to solve dynamic optimization problems. The memory requirements for such problems often present a major obstacle, particularly for problems with PDE constraints such as optimal flow control, full waveform inversion, and optical tomography. In these problems, PDE constraints uniquely determine the state of a physical system for a given control; the goal is to find the value of the control that minimizes an objective. While the control is often low dimensional, the state is typically more expensive to store. This paper suggests using randomized matrix approximation to compress the state as it is generated and shows how to use the compressed state to reliably solve the original dynamic optimization problem. Concretely, the compressed state is used to compute approximate gradients and to apply the Hessian to vectors. The approximation error in these quantities is controlled by the target rank of the sketch. This approximate first- and second-order information can readily be used in any optimization algorithm. As an example, we develop a sketched trust-region method that adaptively chooses the target rank using a posteriori error information and provably converges to a stationary point of the original problem. Numerical experiments with the sketched trust-region method show promising performance on challenging problems such as the optimal control of an advection-reaction-diffusion equation and the optimal control of fluid flow past a cylinder.

More Details

Risk-averse control of fractional diffusion with uncertain exponent

SIAM Journal on Control and Optimization

Antil, Harbir; Kouri, Drew P.; Pfefferer, Johannes

In this paper, we introduce and analyze a new class of optimal control problems constrained by elliptic equations with uncertain fractional exponents. We utilize risk measures to formulate the resulting optimization problem. We develop a functional analytic framework, study the existence of solution, and rigorously derive the first-order optimality conditions. Additionally, we employ a sample-based approximation for the uncertain exponent and the finite element method to discretize in space. We prove the rate of convergence for the optimal risk neutral controls when using quadrature approximation for the uncertain exponent and conclude with illustrative examples.

More Details

Novel Geometric Operations for Linear Programming

Ebeida, Mohamed S.; Abdelkader, Ahmed A.; Amenta, Nina A.; Kouri, Drew P.; Parekh, Ojas D.; Phillips, Cynthia A.; Winovich, Nickolas W.

This report summarizes the work performed under the project "Linear Programming in Strongly Polynomial Time." Linear programming (LP) is a classic combinatorial optimization problem heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is the same as LP except that some solution variables must take integer values (e.g. to represent yes/no decisions). Together LP and IP have many applications in resource allocation including general logistics, and infrastructure design and vulnerability analysis. The project was motivated by the PI's recent success developing methods to efficiently sample Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary dimension. His method seems applicable to exploring the high-dimensional convex feasible space of an LP problem. Although the project did not provably find a strongly-polynomial algorithm, it explored multiple algorithm classes. The new medial simplex algorithms may still lead to solvers with improved provable complexity. We describe medial simplex algorithms and some relevant structural/complexity results. We also designed a novel parallel LP algorithm based on our geometric insights and implemented it in the Spoke-LP code. A major part of the computational step is many independent vector dot products. Our parallel algorithm distributes the problem constraints across processors. Current commercial and high-quality free LP solvers require all problem details to fit onto a single processor or multicore. Our new algorithm might enable the solution of problems too large for any current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments, and describe a new generator for arbitrarily large LP instances.

More Details

Epi-regularization of risk measures

Mathematics of Operations Research

Kouri, Drew P.; Surowiec, Thomas M.

Uncertainty pervades virtually every branch of science and engineering, and in many disciplines, the underlying phenomena can be modeled by partial differential equations (PDEs) with uncertain or random inputs. This work is motivated by risk-averse stochastic programming problems constrained by PDEs. These problems are posed in infinite dimensions, which leads to a significant increase in the scale of the (discretized) problem. In order to handle the inherent nonsmoothness of, for example, coherent risk measures and to exploit existing solution techniques for smooth, PDE-constrained optimization problems, we propose a variational smoothing technique called epigraphical (epi-)regularization. We investigate the effects of epi-regularization on the axioms of coherency and prove differentiability of the smoothed risk measures. In addition, we demonstrate variational convergence of the epi-regularized risk measures and prove the consistency of minimizers and first-order stationary points for the approximate risk-averse optimization problem. We conclude with numerical experiments confirming our theoretical results.

More Details

KKT preconditioners for pde-constrained optimization with the helmholtz equation

SIAM Journal on Scientific Computing

Kouri, Drew P.; Ridzal, Denis R.; Tuminaro, Raymond S.

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the underlying partial differential equation is a Laplace-like operator. In this paper, we extend some of the prior convergence results to Helmholtz-based optimization applications. Our analysis examines situations where control variables and observations are restricted to subregions of the computational domain. We prove that solver convergence rates do not deteriorate as the mesh is refined or as the wavenumber increases. More specifically, for one of the preconditioners we prove accelerated convergence as the wavenumber increases. Additionally, in situations where the control and observation subregions are disjoint, we observe that solver convergence rates have a weak dependence on the regularization parameter. We give a partial analysis of this behavior. We illustrate the performance of the preconditioners on control problems motivated by acoustic testing.

More Details

Risk-averse optimal control of semilinear elliptic PDEs

ESAIM - Control, Optimisation and Calculus of Variations

Kouri, Drew P.; Surowiec, T.M.

In this paper, we consider the optimal control of semilinear elliptic PDEs with random inputs. These problems are often nonconvex, infinite-dimensional stochastic optimization problems for which we employ risk measures to quantify the implicit uncertainty in the objective function. In contrast to previous works in uncertainty quantification and stochastic optimization, we provide a rigorous mathematical analysis demonstrating higher solution regularity (in stochastic state space), continuity and differentiability of the control-to-state map, and existence, regularity and continuity properties of the control-to-adjoint map. Our proofs make use of existing techniques from PDE-constrained optimization as well as concepts from the theory of measurable multifunctions. We illustrate our theoretical results with two numerical examples motivated by the optimal doping of semiconductor devices.

More Details

Higher-moment buffered probability

Optimization Letters

Kouri, Drew P.

In stochastic optimization, probabilities naturally arise as cost functionals and chance constraints. Unfortunately, these functions are difficult to handle both theoretically and computationally. The buffered probability of failure and its subsequent extensions were developed as numerically tractable, conservative surrogates for probabilistic computations. In this manuscript, we introduce the higher-moment buffered probability. Whereas the buffered probability is defined using the conditional value-at-risk, the higher-moment buffered probability is defined using higher-moment coherent risk measures. In this way, the higher-moment buffered probability encodes information about the magnitude of tail moments, not simply the tail average. We prove that the higher-moment buffered probability is closed, monotonic, quasi-convex and can be computed by solving a smooth one-dimensional convex optimization problem. These properties enable smooth reformulations of both higher-moment buffered probability cost functionals and constraints.

More Details

Spectral risk measures: the risk quadrangle and optimal approximation

Mathematical Programming

Kouri, Drew P.

We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. We prove the consistency of this approximation and demonstrate our results through numerical examples.

More Details

An adaptive local reduced basis method for solving PDEs with uncertain inputs and evaluating risk

Computer Methods in Applied Mechanics and Engineering

Zou, Zilong; Kouri, Drew P.; Aquino, Wilkins A.

Many physical systems are modeled using partial differential equations (PDEs) with uncertain or random inputs. For such systems, naively propagating a fixed number of samples of the input probability law (or an approximation thereof) through the PDE is often inadequate to accurately quantify the “risk” associated with critical system responses. In this paper, we develop a goal-oriented, adaptive sampling and local reduced basis approximation for PDEs with random inputs. Our method determines a set of samples and an associated (implicit) Voronoi partition of the parameter domain on which we build local reduced basis approximations of the PDE solution. The samples are selected in an adaptive manner using an a posteriori error indicator. A notable advantage of the proposed approach is that the computational cost of the approximation during the adaptive process remains constant. We provide theoretical error bounds for our approximation and numerically demonstrate the performance of our method when compared to widely used adaptive sparse grid techniques. In addition, we tailor our approach to accurately quantify the risk of quantities of interest that depend on the PDE solution. We demonstrate our method on an advection–diffusion example and a Helmholtz example.

More Details

An efficient, globally convergent method for optimization under uncertainty using adaptive model reduction and sparse grids

SIAM-ASA Journal on Uncertainty Quantification

Zahr, Matthew J.; Carlberg, Kevin T.; Kouri, Drew P.

This work introduces a new method to efficiently solve optimization problems constrained by partial differential equations (PDEs) with uncertain coefficients. The method leverages two sources of inexactness that trade accuracy for speed: (1) stochastic collocation based on dimension-Adaptive sparse grids (SGs), which approximates the stochastic objective function with a limited number of quadrature nodes, and (2) projection-based reduced-order models (ROMs), which generate efficient approximations to PDE solutions. These two sources of inexactness lead to inexact objective function and gradient evaluations, which are managed by a trust-region method that guarantees global convergence by adaptively refining the SG and ROM until a proposed error indicator drops below a tolerance specified by trust-region convergence theory. A key feature of the proposed method is that the error indicator|which accounts for errors incurred by both the SG and ROM|must be only an asymptotic error bound, i.e., a bound that holds up to an arbitrary constant that need not be computed. This enables the method to be applicable to a wide range of problems, including those where sharp, computable error bounds are not available; this distinguishes the proposed method from previous works. Numerical experiments performed on a model problem from optimal ow control under uncertainty verify global convergence of the method and demonstrate the method's ability to outperform previously proposed alternatives.

More Details

Ridge approximation and dimension reduction for an acoustic scattering model

2018 International Applied Computational Electromagnetics Society Symposium in Denver, ACES-Denver 2018

Constantine, Paul G.; Hokanson, Jeffrey M.; Kouri, Drew P.

Problems in uncertainty quantification (UQ) suffer from the curse of dimensionality. One approach to address this issue is to identify and exploit low-dimensional structure in the underlying model. In this paper, we show that low-dimensional active subspaces are not present in a particular model arising from acoustic scattering. This suggests that UQ techniques based on active subspaces are not appropriate for this problem.

More Details

Existence and optimality conditions for risk-averse PDE-constrained optimization

SIAM-ASA Journal on Uncertainty Quantification

Kouri, Drew P.; Surowiec, T.M.

Uncertainty is ubiquitous in virtually all engineering applications, and, for such problems, it is inadequate to simulate the underlying physics without quantifying the uncertainty in unknown or random inputs, boundary and initial conditions, and modeling assumptions. In this work, we introduce a general framework for analyzing risk-averse optimization problems constrained by partial differential equations (PDEs). In particular, we postulate conditions on the random variable objective function as well as the PDE solution that guarantee existence of minimizers. Furthermore, we derive optimality conditions and apply our results to the control of an environmental contaminant. Finally, we introduce a new risk measure, called the conditional entropic risk, that fuses desirable properties from both the conditional value-at-risk and the entropic risk measures.

More Details

LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices

Cyr, Eric C.; von Winckel, Gregory J.; Kouri, Drew P.; Gardiner, Thomas A.; Ridzal, Denis R.; Shadid, John N.; Miller, Sean M.

This LDRD project was developed around the ambitious goal of applying PDE-constrained opti- mization approaches to design Z-machine components whose performance is governed by elec- tromagnetic and plasma models. This report documents the results of this LDRD project. Our differentiating approach was to use topology optimization methods developed for structural design and extend them for application to electromagnetic systems pertinent to the Z-machine. To achieve this objective a suite of optimization algorithms were implemented in the ROL library part of the Trilinos framework. These methods were applied to standalone demonstration problems and the Drekar multi-physics research application. Out of this exploration a new augmented Lagrangian approach to structural design problems was developed. We demonstrate that this approach has favorable mesh-independent performance. Both the final design and the algorithmic performance were independent of the size of the mesh. In addition, topology optimization formulations for the design of conducting networks were developed and demonstrated. Of note, this formulation was used to develop a design for the inner magnetically insulated transmission line on the Z-machine. The resulting electromagnetic device is compared with theoretically postulated designs.

More Details

A measure approximation for distributionally robust PDE-constrained optimization problems

SIAM Journal on Numerical Analysis

Kouri, Drew P.

In numerous applications, scientists and engineers acquire varied forms of data that partially characterize the inputs to an underlying physical system. This data is then used to inform decisions such as controls and designs. Consequently, it is critical that the resulting control or design is robust to the inherent uncertainties associated with the unknown probabilistic characterization of the model inputs. In this paper, we consider optimal control and design problems constrained by partial differential equations with uncertain inputs. We do not assume a known probabilistic model for the inputs, but rather we formulate the problem as a distributionally robust optimization problem where the outer minimization problem determines the control or design, while the inner maximization problem determines the worst-case probability measure that matches desired characteristics of the data. We analyze the inner maximization problem in the space of measures and introduce a novel measure approximation technique, based on the approximation of continuous functions, to discretize the unknown probability measure. We prove consistency of our approximated min-max problem and conclude with numerical results.

More Details

Data-Driven Optimization for the Design and Control of Large-Scale Systems: LDRD Final Report

Kouri, Drew P.

Engineering decisions are often formulated as optimization problems such as the optimal design or control of physical systems. In these applications, the resulting optimization problems are con- strained by large-scale simulations involving systems of partial differential equations (PDEs), or- dinary differential equations (ODEs), and differential algebraic equations (DAEs). In addition, critical components of these systems are fraught with uncertainty, including unverifiable model- ing assumptions, unknown boundary and initial conditions, and uncertain coefficients. Typically, these components are estimated using noisy and incomplete data from a variety of sources (e.g., physical experiments). The lack of knowledge of the true underlying probabilistic characterization of model inputs motivates the need for optimal solutions that are robust to this uncertainty. In this report, we introduce a framework for handling "distributional" uncertainties in the context of simulation-based optimization. This includes a novel measure discretization technique that will lead to an adaptive optimization algorithm tailored to exploit the structures inherent to simulation- based optimization.

More Details

Risk-averse PDE-constrained optimization using the conditional value-at-risk

SIAM Journal on Optimization

Kouri, Drew P.; Surowiec, T.M.

Uncertainty is inevitable when solving science and engineering application problems. In the face of uncertainty, it is essential to determine robust and risk-averse solutions. In this work, we consider a class of PDE-constrained optimization problems in which the PDE coefficients and inputs may be uncertain. We introduce two approximations for minimizing the conditional value-atrisk (CVaR) for such PDE-constrained optimization problems. These approximations are based on the primal and dual formulations of CVaR. For the primal problem, we introduce a smooth approximation of CVaR in order to utilize derivative-based optimization algorithms and to take advantage of the convergence properties of quadrature-based discretizations. For this smoothed CVaR, we prove differentiability as well as consistency of our approximation. For the dual problem, we regularize the inner maximization problem, rigorously derive optimality conditions, and demonstrate the consistency of our approximation. Furthermore, we propose a fixed-point iteration that takes advantage of the structure of the regularized optimality conditions and provides a means of calculating worst-case probability distributions based on the given probability level. We conclude with numerical results.

More Details

Inversion for Eigenvalues and Modes Using Sierra-SD and ROL

Walsh, Timothy W.; Aquino, Wilkins A.; Ridzal, Denis R.; Kouri, Drew P.

In this report we formulate eigenvalue-based methods for model calibration using a PDE-constrained optimization framework. We derive the abstract optimization operators from first principles and implement these methods using Sierra-SD and the Rapid Optimization Library (ROL). To demon- strate this approach, we use experimental measurements and an inverse solution to compute the joint and elastic foam properties of a low-fidelity unit (LFU) model.

More Details

Viscoelastic material inversion using Sierra-SD and ROL

Walsh, Timothy W.; Aquino, Wilkins A.; Ridzal, Denis R.; Kouri, Drew P.; van Bloemen Waanders, Bart G.; Urbina, Angel U.

In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

More Details
89 Results
89 Results