Publications

19 Results
Skip to search filters

Substituent effects on the sol-gel chemistry of organotrialkoxysilanes

Chemistry of Materials

Loy, Douglas A.; Baugher, B.M.; Baugher, C.R.; Schneider, Duane A.; Rahimian, Kamyar R.

Silsesquioxanes are a family of siloxane network polymers that have become important as vehicles for introducing organic functionalities into sol-gel materials. However, there has not been a systematic study of the capacity of organotrialkoxysilanes to form gels through the sol-gel process. In this study, we examined the sol-gel chemistry of organotrialkoxysilanes (RSi(OR′)3) with different organic groups (R = H, Me, Et, Pr, i-Pr, n-Bu, i-Bu, t-Bu, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, cyclohexyl, vinyl, phenyl, benzyl, phenethyl, chloromethyl, chloromethylphenyl, and tridecafluoro-1,1,2,2-tetrahydrooctyl) with methoxide or ethoxide substituents on silicon, at varying monomer concentrations, and under acidic, neutral, and basic conditions. Gels were obtained from the sol-gel polymerization of the monomers with R′ = Me and R = H, Me, vinyl, chloromethyl, chloromethylphenyl, hexadecyl, and octadecyl and R′ = Et and R = H, Me, Et, chloromethyl, vinyl, dodecyl, hexadecyl, and octadecyl. Formation of gels, even with these monomers, was often circumvented by phase separation phenomena, giving rise to crystalline oligomers, resinous materials, and precipitates. Gels obtained from these polymerizations were processed as xerogels and characterized by solid-state NMR, microscopy, and nitrogen sorption porosimetry.

More Details

A Mechanistic Investigation of Gelation. The Sol-Gel Polymerization of Bridged Silsesquioxane Monomers

Accounts of Chemical Research

Loy, Douglas A.; Loy, Douglas A.

The study of a homologous series of silsesquioxane monomers has uncovered striking discontinuities in gelation behavior. An investigation of the chemistry during the early stages of the polymerization has provided a molecular basis for these observations. Monomers containing from one to four carbon atoms exhibit a pronounced tendency to undergo inter or intramolecular cyclization. The cyclic intermediates have been characterized by {sup 29}Si NMR, chemical ionization mass spectrometry and isolation from the reaction solution. These carbosiloxanes are local thermodynamic sinks that produce kinetic bottlenecks in the production of high molecular weight silsesquioxanes. The formation of cyclics results in slowing down or in some cases completely shutting down gelation. An additional finding is that the cyclic structures are incorporated intact into the final xerogel. Since cyclization alters the structure of the building block that eventually makes up the xerogel network, it is expected that this will contribute importantly to the bulk properties of the xerogel as well.

More Details

Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

Macromolecules

Rahimian, Kamyar R.; Loy, Douglas A.

Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

More Details

Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality

Journal of the American Chemical Society

Lu, Yunfeng; Fan, Hongyou; Doke, Nilesh; Loy, Douglas A.; Assink, Roger A.; LaVan, David A.; Brinker, C.J.

We report an evaporation-induced self-assembly procedure to prepare poly(bridged silsesquioxane) thin-film and particulate mesophases that incorporate organic moieties (1-3) into periodic, mesostructured frameworks as molecularly dispersed bridging ligands. Capacitance-voltage measurements along with a variety of structural characterization procedures were performed to begin to elucidate structure-property relationships of this new class of surfactant-templated mesophases. We observed a consistent trend of increasing modulus and hardness and decreasing dielectric constant with substitution of the bridged silsesquioxane (≡Si-(CH2)2-Si≡) for siloxane (≡Si-O-Si≡) in the framework. This preliminary evidence suggests that the introduction of integral organic groups into the frameworks of mesoporous materials can result in synergistic properties, promising an unprecedented ability to tune properties and function.

More Details

Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

Rahimian, Kamyar R.; Loy, Douglas A.

Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

More Details

Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Rahimian, Kamyar R.; Loy, Douglas A.

A novel alkylene-bridged disilaoxacyclopentanes were synthesized through the same methodology utilized in the synthesis of phenylene-bridged disilaoxacyclopentane. Disilaoxacyclopentanes were successfully polymerized using photo-acid generators. Furthermore, it was also been able to apply thin films of these materials to different substrates. Successful ring open polymerization (ROP) of these materials using photo-acid generators should allow to use these materials for applications such as conformal coatings and microlithography.

More Details

Polymethylsilsesquioxanes through base-catalyzed redistribution of oligomethylhydridosiloxanes

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Rahimian, Kamyar R.; Assink, Roger A.; Loy, Douglas A.

Oligomethylhydridosiloxane and tis copolymer with dimethylsiloxane undergo redistribution chemistry with catalytic tetrabutylammonium hydroxide (TBAH) to produce methylsilane and polymethylsilsesquioxanes. The rate and extent of redistribution reaction can be controlled by the amount of TBAH added, as well as use of solvent. The extent reaction can be followed by both infrared radiation (IR) and solid state NMR spectroscopy, following the disappearance of the SiH in the starting oligosiloxane.

More Details

Porosity in polysilsesquioxane xerogels

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Loy, Douglas A.; Schneider, Duane A.; Baugher, Brigitte M.; Rahimian, Kamyar

Polysilsesquioxane xerogels were prepared by the sol-gel polymerization of organotrialkoxysilanes, RSi(OR′)3, with R′ = Me: R = H, Me, vinyl, chloromethyl, chloromethylphenyl, hexadecyl, and octadecyl and R′ = Et: R = H, Me, Et, cyanoethyl, chloromethyl, vinyl, dodecyl, and hexadecyl. The majority of the gels were opaque and colloidal in appearance. The porosity of the xerogels was characterized by nitrogen porosimetry and scanning electron microscopy. Many of the remaining organotrialkoxysilanes formed porous polymeric gels, but the surface areas were lower and the mean pore sizes larger. Some of the xerogels, especially those prepared under acidic conditions were non-porous.

More Details

Molecular engineering with bridged polysilsesquioxanes

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Loy, Douglas A.; Shea, Kenneth J.

Bridged polysilsesquioxanes are a class of hybrid organic-inorganic materials that permit molecular engineering of bulk properties including porosity. The briding configuration of the hydrocarbon group insures that network polymers are readily formed and that the organic functionality is homogeneously distributed throughout the polymeric scaffolding at the molecular level. The effects that the length, flexibility, and substitution geometry of the hydrocarbon bridging groups have on the properties of the resulting bridged polysilsesquioxanes are investigated. Details of the preparation, characterization, and some structure property relationships of these bridged polysilsesquioxanes are presented.

More Details

Bridged polysilsesquioxanes: A molecular based approach for the synthesis of functional hybrid materials

American Chemical Society, Polymer Preprints, Division of Polymer Chemistry

Shea, Kenneth J.; Loy, Douglas A.

Bridged polysilsesquioxanes (BPS) are a family of hybrid organic-inorganic materials prepared by sol-gel polymerization of molecular building blocks that contain a variable organic component and at least two trifunctional silyl groups. The synthesis of functional BPS is presented. Dipropylene and diisobutylene carbonate-bridging groups are successfully used as masked hydroxyalkyl and allylic substituents in polysilsequioxane gels and the nature of the substituents is controlled through the surface modification of the gels prior to heat treatment.

More Details

Sol-gel chemistry by ring-opening polymerization

Rahimian, Kamyar R.; Loy, Douglas A.; Loy, Douglas A.

Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solvent is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.

More Details

Final report for the designed synthesis of controlled degradative materials LDRD

Loy, Douglas A.; Ulibarri, Tamara A.; Curro, John G.; Wiemann, Dora K.; Guess, Tommy R.

The main goal of this research was to develop degradable systems either by developing weaklink-containing polymers or identifying commercial polymeric systems which are easily degraded. In both cases, the degradation method involves environmentally friendly chemistries. The weaklinks are easily degradable fragments which are introduced either randomly or regularly in the polymer backbone or as crosslinking sites to make high molecular weight systems via branching. The authors targeted three general application areas: (1) non-lethal deterrents, (2) removable encapsulants, and (3) readily recyclable/environmentally friendly polymers for structural and thin film applications.

More Details

LDRD final report on intelligent polymers for nanodevice performance control

Jamison, Gregory M.; Loy, Douglas A.; Shelnutt, John A.; Carr, Martin J.

A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

More Details
19 Results
19 Results