Publications

9 Results
Skip to search filters

Microcalibrator system for chemical signature and reagent delivery

Simonson, Robert J.; Rawlinson, Kim S.; Robinson, Alex L.; Ellison, Jennifer A.; Staton, Alan W.; Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Hance, Bradley G.

Networked systems of low-cost, small, integrable chemical sensors will enable monitoring of Nonproliferation and Materials Control targets and chemical weapons threats. Sandia-designed prototype chemical sensor systems are undergoing extended field testing supported by DOE and other government agencies. A required surety component will be verification of microanalytical system performance, which can be achieved by providing a programmable source of chemical signature(s) for autonomous calibration of analytical systems. In addition, such a controlled chemical source could be used to dispense microaliquots of derivatization reagents, extending the analysis capability of chemical sensors to a wider range of targets. We have developed a microfabricated system for controlled release of selected compounds (calibrants) into the analytical stream of microsensor systems. To minimize pumping and valve requirements of microfluidic systems, and to avoid degradation issues associated with storage of dilute solutions, we have utilized thermally labile organic salts as solid-phase reservoir materials. Reproducible deposition of tetrapropyl ammonium hydroxide onto arrays of microfabricated heating elements can provide a pair of calibration marker compounds (one fast and one slow-eluting compound) for GC analyses. The use of this microaliquot gas source array for hydrogen generation is currently under further development. The goal of the latter effort will be to provide a source of high-pressure, low viscosity GC carrier gas for Sandia's next-generation microfabricated gas-phase chemical analysis systems.

More Details

Resolving fundamental limits of adhesive bonding in microfabrication

Giunta, Rachel K.; Frischknecht, Amalie F.; Galloway, Stacie G.; Giunta, Rachel K.; Emerson, John A.; Lamppa, Kerry P.; Kent, Michael S.; Weems, Jessica S.; Read, Douglas R.; Adkins, Douglas R.

As electronic and optical components reach the micro- and nanoscales, efficient assembly and packaging require the use of adhesive bonds. This work focuses on resolving several fundamental issues in the transition from macro- to micro- to nanobonding. A primary issue is that, as bondline thicknesses decrease, knowledge of the stability and dewetting dynamics of thin adhesive films is important to obtain robust, void-free adhesive bonds. While researchers have studied dewetting dynamics of thin films of model, non-polar polymers, little experimental work has been done regarding dewetting dynamics of thin adhesive films, which exhibit much more complex behaviors. In this work, the areas of dispensing small volumes of viscous materials, capillary fluid flow, surface energetics, and wetting have all been investigated. By resolving these adhesive-bonding issues, we are allowing significantly smaller devices to be designed and fabricated. Simultaneously, we are increasing the manufacturability and reliability of these devices.

More Details

Monolithically-integrated MicroChemLab for gas-phase chemical analysis

Shul, Randy J.; Manginell, Ronald P.; Okandan, Murat O.; Kottenstette, Richard K.; Lewis, Patrick R.; Adkins, Douglas R.; Bauer, Joseph M.; Sokolowski, Sara S.

Sandia National Labs has developed an autonomous, hand-held system for sensitive/selective detection of gas-phase chemicals. Through the sequential connection of microfabricated preconcentrators (PC), gas chromatography columns (GC) and a surface acoustic wave (SAW) detector arrays, the MicroChemLab{trademark} system is capable of selective and sensitive chemical detection in real-world environments. To date, interconnection of these key components has primarily been achieved in a hybrid fashion on a circuit board modified to include fluidic connections. The monolithic integration of the PC and GC with a silicon-based acoustic detector is the subject of this work.

More Details

Deployment of a Continuously Operated {mu}ChemLab

Adkins, Douglas R.; Kottenstette, Richard K.; Lewis, Patrick R.; Dulleck, George R.; Oborny, Michael C.; Gordon, Susanna P.; Foltz, Greg W.

A continuously operating prototype chemical weapons sensor system based on the {mu}ChemLab{trademark} technology was installed in the San Francisco International Airport in late June 2002. This prototype was assembled in a National Electric Manufacturers Association (NEMA) enclosure and controlled by a personal computer collocated with it. Data from the prototype was downloaded regularly and periodic calibration tests were performed through modem-operated control. The instrument was installed just downstream of the return air fans in the return air plenum of a high-use area of a boarding area. A CW Sentry, manufactured by Microsensor Systems, was installed alongside the {mu}ChemLab unit and results from its operation are reported elsewhere. Tests began on June 26, 2002 and concluded on October 16, 2002. This report will discuss the performance of the prototype during the continuous testing period. Over 70,000 test cycles were performed during this period. Data from this first field emplacement have indicated several areas where engineering improvements can be made for future field emplacement.

More Details

Design and Testing of a Micro Thermal Conductivity Detector (TCD) System

Horschel, Daniel S.; Einfeld, Wayne E.; Showalter, Steven K.; Cruz, Dolores C.; Gelbard, Fred G.; Manginell, Ronald P.; Adkins, Douglas R.; Kottenstette, Richard K.; Rawlinson, Kim S.; Dulleck, George R.

This work describes the design, simulation, fabrication and characterization of a microfabricated thermal conductivity detector to be used as an extension of the {micro}ChemLab{trademark}. The device geometry was optimized by simulating the heat transfer in the device, utilizing a boundary element algorithm. In particular it is shown that within microfabrication constraints, a micro-TCD optimized for sensitivity can be readily calculated. Two flow patterns were proposed and were subsequently fabricated into nine-promising geometries. The microfabricated detector consists of a slender metal film, supported by a suspended thin dielectric film over a pyramidal or trapezoidal silicon channel. It was demonstrated that the perpendicular flow, where the gas directly impinges on the membrane, creates a device that is 3 times more sensitive than the parallel flow, where the gas passed over the membrane. This resulted in validation of the functionality of a microfabricated TCD as a trace-level detector, utilizing low power. the detector shows a consistent linear response to concentration and they are easily able to detect 100-ppm levels of CO in He. Comparison of noise levels for this analysis indicates that sub part per million (ppm) levels are achievable with the selection of the right set of conditions for the detector to operate under. This detector was originally proposed as part of a high-speed detection system for the petrochemical gas industry. This system was to be utilized as a process monitor to detect reactor ''upset'' conditions before a run away condition could occur (faster than current full-scale monitoring systems were able to achieve). Further outlining of requirements indicated that the detection levels likely achievable with a TCD detector would not be sufficient to meet the process condition needs. Therefore the designed and fabricated detector was integrated into a detection system to showcase some technologies that could further the development of components for the current gas phase {micro}ChemLab as well as future modifications for process monitoring work such as: pressurized connections, gas sampling procedures, and packed columns. Component integration of a microfabricated planar pre-concentrator, gas-chromatograph column and TCD in the separation/detection of hydrocarbons, such as benzene, toluene and xylene (BTX) was also demonstrated with this system.

More Details

Integrated Microsensors for Autonomous Microrobots

Heller, Edwin J.; Adkins, Douglas R.; Byrne, Raymond H.; Heller, Edwin J.; Wolf, Jimmie V.

This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.

More Details

Development of Magnetically Excited Flexural Plate Wave Devices for Implementation as Physical, Chemical, and Acoustic Sensors, and as Integrated Micro-Pumps for Sensored Systems

Schubert, William K.; Mitchell, Mary-Anne M.; Graf, Darin C.; Shul, Randy J.; Adkins, Douglas R.; Anderson, Lawrence F.; Wessendorf, Kurt O.

The magnetically excited flexural plate wave (mag-FPW) device has great promise as a versatile sensor platform. FPW's can have better sensitivity at lower operating frequencies than surface acoustic wave (SAW) devices. Lower operating frequency (< 1 MHz for the FPW versus several hundred MHz to a few GHz for the SAW device) simplifies the control electronics and makes integration of sensor with electronics easier. Magnetic rather than piezoelectric excitation of the FPW greatly simplifies the device structure and processing by eliminating the need for piezoelectric thin films, also simplifying integration issues. The versatile mag-FPW resonator structure can potentially be configured to fulfill a number of critical functions in an autonomous sensored system. As a physical sensor, the device can be extremely sensitive to temperature, fluid flow, strain, acceleration and vibration. By coating the membrane with self-assembled monolayers (SAMs), or polymer films with selective absorption properties (originally developed for SAW sensors), the mass sensitivity of the FPW allows it to be used as biological or chemical sensors. Yet another critical need in autonomous sensor systems is the ability to pump fluid. FPW structures can be configured as micro-pumps. This report describes work done to develop mag-FPW devices as physical, chemical, and acoustic sensors, and as micro-pumps for both liquid and gas-phase analytes to enable new integrated sensing platform.

More Details
9 Results
9 Results