Publications

29 Results
Skip to search filters

Accident Source Terms for Pressurized Water Reactors with High-Burnup Cores Calculated using MELCOR 1.8.5

Gauntt, Randall O.; Goldmann, Andrew G.; Kalinich, Donald A.; Powers, Dana A.

In this study, risk-significant pressurized-water reactor severe accident sequences are examined using MELCOR 1.8.5 to explore the range of fission product releases to the reactor containment building. Advances in the understanding of fission product release and transport behavior and severe accident progression are used to render best estimate analyses of selected accident sequences. Particular emphasis is placed on estimating the effects of high fuel burnup in contrast with low burnup on fission product releases to the containment. Supporting this emphasis, recent data available on fission product release from high-burnup (HBU) fuel from the French VERCOR project are used in this study. The results of these analyses are treated as samples from a population of accident sequences in order to employ approximate order statistics characterization of the results. These trends and tendencies are then compared to the NUREG-1465 alternative source term prescription used today for regulatory applications. In general, greater differences are observed between the state-of-the-art calculations for either HBU or low-burnup (LBU) fuel and the NUREG-1465 containment release fractions than exist between HBU and LBU release fractions. Current analyses suggest that retention of fission products within the vessel and the reactor coolant system (RCS) are greater than contemplated in the NUREG-1465 prescription, and that, overall, release fractions to the containment are therefore lower across the board in the present analyses than suggested in NUREG-1465. The decreased volatility of Cs 2 MoO 4 compared to CsI or CsOH increases the predicted RCS retention of cesium, and as a result, cesium and iodine do not follow identical behaviors with respect to distribution among vessel, RCS, and containment. With respect to the regulatory alternative source term, greater differences are observed between the NUREG-1465 prescription and both HBU and LBU predictions than exist between HBU and LBU analyses. Additionally, current analyses suggest that the NUREG-1465 release fractions are conservative by about a factor of 2 in terms of release fractions and that release durations for in-vessel and late in-vessel release periods are in fact longer than the NUREG-1465 durations. It is currently planned that a subsequent report will further characterize these results using more refined statistical methods, permitting a more precise reformulation of the NUREG-1465 alternative source term for both LBU and HBU fuels, with the most important finding being that the NUREG-1465 formula appears to embody significant conservatism compared to current best-estimate analyses. ACKNOWLEDGEMENTS This work was supported by the United States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The authors would like to thank Dr. Ian Gauld and Dr. Germina Ilas, of Oak Ridge National Laboratory, for their contributions to this work. In addition to development of core fission product inventory and decay heat information for use in MELCOR models, their insights related to fuel management practices and resulting effects on spatial distribution of fission products in the core was instrumental in completion of our work.

More Details

Presentation of Fukushima Analyses to U.S. Nuclear Power Plant Simulator Operators and Vendors

Osborn, Douglas M.; Kalinich, Donald A.; Cardoni, Jeffrey N.

This document provides Sandia National Laboratories’ meeting notes and presentations at the Society for Modeling and Simulation Power Plant Simulator conference in Jacksonville, FL. The conference was held January 26-28, 2015, and SNL was invited by the U.S. nuclear industry to present Fukushima modeling insights and lessons learned.

More Details

Fukushima Daiichi unit 1 uncertainty analysis--Preliminary selection of uncertain parameters and analysis methodology

Cardoni, Jeffrey N.; Kalinich, Donald A.

Sandia National Laboratories (SNL) plans to conduct uncertainty analyses (UA) on the Fukushima Daiichi unit (1F1) plant with the MELCOR code. The model to be used was developed for a previous accident reconstruction investigation jointly sponsored by the US Department of Energy (DOE) and Nuclear Regulatory Commission (NRC). However, that study only examined a handful of various model inputs and boundary conditions, and the predictions yielded only fair agreement with plant data and current release estimates. The goal of this uncertainty study is to perform a focused evaluation of uncertainty in core melt progression behavior and its effect on key figures-of-merit (e.g., hydrogen production, vessel lower head failure, etc.). In preparation for the SNL Fukushima UA work, a scoping study has been completed to identify important core melt progression parameters for the uncertainty analysis. The study also lays out a preliminary UA methodology.

More Details

SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement

Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle R.; Cardoni, Jeffrey N.; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric J.

This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

More Details

Melcor simulations of the severe accident at the Fukushima Daiichi unit 1 reactor

Nuclear Technology

Gauntt, Randall O.; Kalinich, Donald A.; Cardoni, Jeffrey N.; Phillips, Jesse

In response to the accident at the Fukushima Daiichi nuclear power station in Japan, the U.S. Nuclear Regulatory Commission and US. Department of Energy agreed to jointly sponsor an accident reconstruction study as a means of assessing the severe accident modeling capability of the MELCOR code and developing an understanding of the likely accident progression. Objectives of the project included reconstruction of the accident progressions using computer models and accident data, and validation of MELCOR and the Fukushima models against plant data. In this study Sandia National Laboratories developed MELCOR 2.1 models of Fukushima Daiichi Units 1 (IFI), 2, and 3 as well as the Unit 4 spent fuel pool. This paper reports on the analysis of the 1F1 accident. Details are presented on the modeled accident progression, hypothesized mode of failures in the reactor pressure vessel (RPV) and containment pressure boundary, and release of fission products to the environment. The MELCOR-predicted RPV and containment pressure trends compare well with available measured pressures. Conditions leading up to the observed explosion of the reactor building are postulated based on this analysis where drywell head flange leakage is thought to have led to accumulation of flammable gases in the refueling bay. The favorable comparison of the results from the analyses with the data from the plant provides additional confidence in MELCOR to reliably predict real-world accident progression. The modeling effort has also provided insights into future data needs for both model development and validation.

More Details

Interim MELCOR Simulation of the Fukushima Daiichi Unit 2 Accident Reactor Core Isolation Cooling Operation

Ross, Kyle R.; Gauntt, Randall O.; Cardoni, Jeffrey N.; Phillips, Jesse P.; Kalinich, Donald A.; Osborn, Douglas M.

Data, a brief description of key boundary conditions, and results of Sandia National Laboratories’ ongoing MELCOR analysis of the Fukushima Unit 2 accident are given for the reactor core isolation cooling (RCIC) system. Important assumptions and related boundary conditions in the current analysis additional to or different than what was assumed/imposed in the work of SAND2012-6173 are identified. This work is for the U.S. Department of Energy’s Nuclear Energy University Programs fiscal year 2014 Reactor Safety Technologies Research and Development Program RC-7: RCIC Performance under Severe Accident Conditions.

More Details

Development, analysis, and evaluation of a commercial software framework for the study of Extremely Low Probability of Rupture (xLPR) events at nuclear power plants

Mattie, Patrick D.; Sallaberry, Cedric J.; Kalinich, Donald A.

Sandia National Laboratories (SNL) participated in a Pilot Study to examine the process and requirements to create a software system to assess the extremely low probability of pipe rupture (xLPR) in nuclear power plants. This project was tasked to develop a prototype xLPR model leveraging existing fracture mechanics models and codes coupled with a commercial software framework to determine the framework, model, and architecture requirements appropriate for building a modular-based code. The xLPR pilot study was conducted to demonstrate the feasibility of the proposed developmental process and framework for a probabilistic code to address degradation mechanisms in piping system safety assessments. The pilot study includes a demonstration problem to assess the probability of rupture of DM pressurizer surge nozzle welds degraded by primary water stress-corrosion cracking (PWSCC). The pilot study was designed to define and develop the framework and model; then construct a prototype software system based on the proposed model. The second phase of the project will be a longer term program and code development effort focusing on the generic, primary piping integrity issues (xLPR code). The results and recommendations presented in this report will be used to help the U.S. Nuclear Regulatory Commission (NRC) define the requirements for the longer term program.

More Details

Application of the DG-1199 methodology to the ESBWR and ABWR

Kalinich, Donald A.; Walton, Fotini W.; Gauntt, Randall O.

Appendix A-5 of Draft Regulatory Guide DG-1199 'Alternative Radiological Source Term for Evaluating Design Basis Accidents at Nuclear Power Reactors' provides guidance - applicable to RADTRAD MSIV leakage models - for scaling containment aerosol concentration to the expected steam dome concentration in order to preserve the simplified use of the Accident Source Term (AST) in assessing containment performance under assumed design basis accident (DBA) conditions. In this study Economic and Safe Boiling Water Reactor (ESBWR) and Advanced Boiling Water Reactor (ABWR) RADTRAD models are developed using the DG-1199, Appendix A-5 guidance. The models were run using RADTRAD v3.03. Low Population Zone (LPZ), control room (CR), and worst-case 2-hr Exclusion Area Boundary (EAB) doses were calculated and compared to the relevant accident dose criteria in 10 CFR 50.67. For the ESBWR, the dose results were all lower than the MSIV leakage doses calculated by General Electric/Hitachi (GEH) in their licensing technical report. There are no comparable ABWR MSIV leakage doses, however, it should be noted that the ABWR doses are lower than the ESBWR doses. In addition, sensitivity cases were evaluated to ascertain the influence/importance of key input parameters/features of the models.

More Details

Iodine transport analysis in the ESBWR

Young, Michael F.; Gauntt, Randall O.; Kalinich, Donald A.

A simplified ESBWR MELCOR model was developed to track the transport of iodine released from damaged reactor fuel in a hypothesized core damage accident. To account for the effects of iodine pool chemistry, radiolysis of air and cable insulation, and surface coatings (i.e., paint) the iodine pool model in MELCOR was activated. Modifications were made to MELCOR to add sodium pentaborate as a buffer in the iodine pool chemistry model. An issue of specific interest was whether iodine vapor removed from the drywell vapor space by the PCCS heat exchangers would be sequestered in water pools or if it would be rereleased as vapor back into the drywell. As iodine vapor is not included in the deposition models for diffusiophoresis or thermophoresis in current version of MELCOR, a parametric study was conducted to evaluate the impact of a range of iodine removal coefficients in the PCCS heat exchangers. The study found that higher removal coefficients resulted in a lower mass of iodine vapor in the drywell vapor space.

More Details

Analysis of main steam isolation valve leakage in design basis accidents using MELCOR 1.8.6 and RADTRAD

Gauntt, Randall O.; Radel, Tracy R.; Kalinich, Donald A.

Analyses were performed using MELCOR and RADTRAD to investigate main steam isolation valve (MSIV) leakage behavior under design basis accident (DBA) loss-of-coolant (LOCA) conditions that are presumed to have led to a significant core melt accident. Dose to the control room, site boundary and LPZ are examined using both approaches described in current regulatory guidelines as well as analyses based on best estimate source term and system response. At issue is the current practice of using containment airborne aerosol concentrations as a surrogate for the in-vessel aerosol concentration that exists in the near vicinity of the MSIVs. This study finds current practice using the AST-based containment aerosol concentrations for assessing MSIV leakage is non-conservative and conceptually in error. A methodology is proposed that scales the containment aerosol concentration to the expected vessel concentration in order to preserve the simplified use of the AST in assessing containment performance under assumed DBA conditions. This correction is required during the first two hours of the accident while the gap and early in-vessel source terms are present. It is general practice to assume that at {approx}2hrs, recovery actions to reflood the core will have been successful and that further core damage can be avoided. The analyses performed in this study determine that, after two hours, assuming vessel reflooding has taken place, the containment aerosol concentration can then conservatively be used as the effective source to the leaking MSIV's. Recommendations are provided concerning typical aerosol removal coefficients that can be used in the RADTRAD code to predict source attenuation in the steam lines, and on robust methods of predicting MSIV leakage flows based on measured MSIV leakage performance.

More Details

A User’s Guide for INPAGN_Launcher.DLL

Mattie, Patrick D.; Kalinich, Donald A.

Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal, and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In cooperation with the Republic of Taiwan’s Institute of Nuclear Engineering and Research (INER), Sandia National Laboratories (SNL) has developed software that provides an interface between a deterministic mass transport code and GoldSim™ (a commercial software used to conduct Monte Carlo analyses). The SNL-developed software enables INER to perform probabilistic simulations for safety analysis and performance assessment of geologic disposal of commercial spent nuclear fuel. This report details the software design, the steps necessary to use the software, and presents an example application of the paradigm of coupling deterministic codes to a contemporary probabilistic software application.

More Details
29 Results
29 Results