Technical goals of the Saturn recapitalization project
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE International Pulsed Power Conference
Herein we describe the design, simulation and performance of a 118-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 to 24 'Bricks'. Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bi-polar charged to a total of 200 kV. Typical brick circuit parameters are 40 nF (two 80 nF capacitors in series) and 160 nH inductance. Over the course of over 10,000 shots the cavity generated a peak electrical current and power of 1.19 MA and 118 GW.
Physical Review Accelerators and Beams
Here we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 “bricks.” Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.
Current loss in magnetically insulated transmission lines (MITLs) was investigated using data from experiments conducted on Z and Mykonos. Data from experiments conducted on Z were used to optimize an ion diode current loss model that has been implemented into the transmission line circuit model of Z. Details on the current loss model and comparisons to data from Z experiments have been previously published in a peer-reviewed journal [Hutsel, et al., Phys. Rev. Accel. Beams 21, 030401]. Dedicated power flow experiments conducted on Mykonos investigated current loss in a millimeter-scale anode-cathode gap MITL operated at lineal current densities greater than 410 kA/cm and with electric field stresses in excess of 240 kV/cm where it is expected that both anode and cathode plasmas are formed. The experiment MITLs were exposed to varying vacuum conditions; including vacuum pressure at shot time, time under vacuum, and vacuum storage protocols. The results indicate that the vacuum conditions have an effect on current loss in high lineal current density MITLs.
Magneti zed Liner Inerti al Fusion (MagLIF ) is an inertial confinement fusion (ICF) concept that includes a strong magnetic field embedded in the fuel to mitigate thermal conduction loss during the implosion . MagLIF experiments on Sandia's 20 MA Z Machine uses an external Helmholtz - like coil pair for fuel premagnetization . By contrast, t he novel AutoMag concept employs a composite liner (cylindrical tube) with helically oriented conduction paths separated by insulating material to provide axial premagnetization of the fuel . Initially, during a current prepulse that slowly rises to %7E1 MA, current flows helically through the AutoMag liner , and so urces the fuel with an axial field . Next, a rapidly rising main current pulse breaks down the insulation and current in th e liner becomes purely axial. The liner and premagnetized fuel are then compressed by the rapidly growing azimuthal field external to t he liner. This integrated axial - field - production mechanism offers a few potential advantages when compared to the externa l premagnetization coils. AutoMag can increase drive current to MagLIF experiments by enabling a lower inductance transmission line , provide higher premagnetization field (>30 T), and greatly increase radial x - ray diagnostic access. 3D electromagnetic si mulations using ANSYS Maxwell have been completed in order to explore the current distributions within the helical conduction paths, the inter - wire dielectric strength properties, and the thermal properties of the helical conduction paths during premagneti zation (%7E1 MA in 100ns). Th ree liner designs , of varying peak field strength, and associated varying risk of dielectric breakdown, will soon be tested in experiments on the %7E 1 MA, 100ns Mykonos facility. Experiments will measure B z (t) inside of the line r and assess failure mechanisms.
Physical Review Accelerators and Beams
In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.
Digest of Technical Papers-IEEE International Pulsed Power Conference
An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs) the platform is driven by the Mykonos-V LTD accelerator to drive a coaxial MITL with a millimeter-scale anode-cathode gap the experiments conducted quantify the current loss in the MITL with respect to vacuum pumpdown time and vacuum pressure. MITL gaps between 1.0 mm and 1.3 mm were tested the experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps the 1.0 mm gap resulted in current losses of 40%-60% of the peak current the 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps.
Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable for future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.