Publications

2 Results
Skip to search filters

A Novel Microcombustor for Sensor and Thermal Energy Management Applications in Microsystems

Manginell, Ronald P.; Manginell, Ronald P.; Moorman, Matthew W.; Colburn, Christopher C.; Anderson, Lawrence F.; Gardner, Timothy J.; Mowery-Evans, Deborah L.; Clem, Paul G.; Margolis, Stephen B.

The microcombustor described in this report was developed primarily for thermal management in microsystems and as a platform for micro-scale flame ionization detectors (microFID). The microcombustor consists of a thin-film heater/thermal sensor patterned on a thin insulating membrane that is suspended from its edges over a silicon frame. This micromachined design has very low heat capacity and thermal conductivity and is an ideal platform for heating catalytic materials placed on its surface. Catalysts play an important role in this design since they provide a convenient surface-based method for flame ignition and stabilization. The free-standing platform used in the microcombustor mitigates large heat losses arising from large surface-to-volume ratios typical of the microdomain, and, together with the insulating platform, permit combustion on the microscale. Surface oxidation, flame ignition and flame stabilization have been demonstrated with this design for hydrogen and hydrocarbon fuels premixed with air. Unoptimized heat densities of 38 mW/mm{sup 2} have been achieved for the purpose of heating microsystems. Importantly, the microcombustor design expands the limits of flammability (Low as compared with conventional diffusion flames); an unoptimized LoF of 1-32% for natural gas in air was demonstrated with the microcombustor, whereas conventionally 4-16% observed. The LoF for hydrogen, methane, propane and ethane are likewise expanded. This feature will permit the use of this technology in many portable applications were reduced temperatures, lean fuel/air mixes or low gas flows are required. By coupling miniature electrodes and an electrometer circuit with the microcombustor, the first ever demonstration of a microFID utilizing premixed fuel and a catalytically-stabilized flame has been performed; the detection of -1-3% of ethane in hydrogen/air is shown. This report describes work done to develop the microcombustor for microsystem heating and flame ionization detection and includes a description of modeling and simulation performed to understand the basic operation of this device. Ancillary research on the use of the microcombustor in calorimetric gas sensing is also described where appropriate.

More Details

Preparation Effects on the Performance of Silica-Doped Hydrous Titanium Oxide (HTO:Si)-Supported Pt Catalysts for Lean-Burn NOx Reduction by Hydrocarbons

Gardner, Timothy J.; Mclaughlin, Linda I.; Mowery-Evans, Deborah L.; Sandoval, Ronald S.

This report describes the development of bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported Pt catalysts for lean-burn NOx catalyst applications. The effects of various preparation methods, including both anion and cation exchange, and specifically the effect of Na content on the performance of Pt/HTO:Si catalysts, were evaluated. Pt/HTO:Si catalysts with low Na content (< 0.5 wt.%) were found to be very active for NOx reduction in simulated lean-burn exhaust environments utilizing propylene as the major reductant species. The activity and performance of these low Na Pt/HTO:Si catalysts were comparable to supported Pt catalysts prepared using conventional oxide or zeolite supports. In ramp down temperature profile test conditions, Pt/HTO:Si catalysts with Na contents in the range of 3-5 wt.% showed a wide temperature window of appreciable NOx conversion relative to low Na Pt/HTO:Si catalysts. Full reactant species analysis using both ramp up and isothermal test conditions with the high Na Pt/HTO:Si catalysts, as well as diffuse reflectance FTIR studies, showed that this phenomenon was related to transient NOx storage effects associated with NaNO{sub 2}/NaNO{sub 3} formation. These nitrite/nitrate species were found to decompose and release NOx at temperatures above 300 C in the reaction environment (ramp up profile). A separate NOx uptake experiment at 275 C in NO/N{sub 2}/O{sub 2} showed that the Na phase was inefficiently utilized for NOx storage. Steady state tests showed that the effect of increased Na content was to delay NOx light-off and to decrease the maximum NOx conversion. Similar results were observed for high K Pt/HTO:Si catalysts, and the effects of high alkali content were found to be independent of the sample preparation technique. Catalyst characterization (BET surface area, H{sub 2} chemisorption, and transmission electron microscopy) was performed to elucidate differences between the HTO- and HTO:Si-supported Pt catalysts and conventional oxide- or zeolite-supported Pt catalysts.

More Details
2 Results
2 Results