Publications

7 Results
Skip to search filters

Experimental Results from the 1.2 ma, 2.2 m Diameter Linear Transformer Driver at Sandia National Labs

IEEE International Pulsed Power Conference

Douglass, Jonathan D.; Cuneo, M.E.; Jaramillo, Deanna M.; Johns, Owen J.; Jones, M.C.; Lucero, Diego J.; Moore, James M.; Sceiford, Matthew S.; Kiefer, Mark L.; Mulville, Thomas D.; Sullivan, Michael A.; Hutsel, Brian T.; Hohlfelder, Robert J.; Leckbee, J.J.; Stoltzfus, B.S.; Wisher, M.L.; Savage, Mark E.; Stygar, W.A.; Breden, E.W.; Calhoun, Jacob D.

Herein we describe the design, simulation and performance of a 118-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 to 24 'Bricks'. Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bi-polar charged to a total of 200 kV. Typical brick circuit parameters are 40 nF (two 80 nF capacitors in series) and 160 nH inductance. Over the course of over 10,000 shots the cavity generated a peak electrical current and power of 1.19 MA and 118 GW.

More Details

100 GW linear transformer driver cavity: Design, simulations, and performance

Physical Review Accelerators and Beams

Douglass, Jonathan D.; Hutsel, Brian T.; Leckbee, Joshua L.; Mulville, Thomas D.; Stoltzfus, Brian S.; Savage, Mark E.; Breden, E.W.; Calhoun, Jacob D.; Cuneo, M.E.; De Smet, Dennis J.; Hohlfelder, Robert J.; Jaramillo, Deanna M.; Johns, Owen J.; Lombrozo, Aaron C.; Lucero, Diego J.; Moore, James M.; Porter, John L.; Radovich, S.; Sceiford, Matthew S.; Sullivan, Michael A.; Walker, Charles A.; Yazzie, Nicole T.

Here we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 “bricks.” Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.

More Details

Current Loss in 0.1 - 100 Terawatt Vacuum Transmission Lines: Experiments and Simulations

Hutsel, Brian T.; Gansz, Jacy N.; Jaramillo, Deanna M.; Lucero, Diego J.; Moore, James M.; Rose, David V.; Stygar, William S.

Current loss in magnetically insulated transmission lines (MITLs) was investigated using data from experiments conducted on Z and Mykonos. Data from experiments conducted on Z were used to optimize an ion diode current loss model that has been implemented into the transmission line circuit model of Z. Details on the current loss model and comparisons to data from Z experiments have been previously published in a peer-reviewed journal [Hutsel, et al., Phys. Rev. Accel. Beams 21, 030401]. Dedicated power flow experiments conducted on Mykonos investigated current loss in a millimeter-scale anode-cathode gap MITL operated at lineal current densities greater than 410 kA/cm and with electric field stresses in excess of 240 kV/cm where it is expected that both anode and cathode plasmas are formed. The experiment MITLs were exposed to varying vacuum conditions; including vacuum pressure at shot time, time under vacuum, and vacuum storage protocols. The results indicate that the vacuum conditions have an effect on current loss in high lineal current density MITLs.

More Details

Auto-magnetizing (AutoMag) liners for MagLIF: Helically-wound composite liners

Awe, Thomas J.; Shipley, Gabriel A.; Hutchinson, Trevor M.; Hutsel, Brian T.; Jaramillo, Deanna M.; Jennings, Christopher A.; Lamppa, Derek C.; Lucero, Diego J.; Lucero, Larry M.; McBride, Ryan D.; Slutz, Stephen A.

Magneti zed Liner Inerti al Fusion (MagLIF ) is an inertial confinement fusion (ICF) concept that includes a strong magnetic field embedded in the fuel to mitigate thermal conduction loss during the implosion . MagLIF experiments on Sandia's 20 MA Z Machine uses an external Helmholtz - like coil pair for fuel premagnetization . By contrast, t he novel AutoMag concept employs a composite liner (cylindrical tube) with helically oriented conduction paths separated by insulating material to provide axial premagnetization of the fuel . Initially, during a current prepulse that slowly rises to %7E1 MA, current flows helically through the AutoMag liner , and so urces the fuel with an axial field . Next, a rapidly rising main current pulse breaks down the insulation and current in th e liner becomes purely axial. The liner and premagnetized fuel are then compressed by the rapidly growing azimuthal field external to t he liner. This integrated axial - field - production mechanism offers a few potential advantages when compared to the externa l premagnetization coils. AutoMag can increase drive current to MagLIF experiments by enabling a lower inductance transmission line , provide higher premagnetization field (>30 T), and greatly increase radial x - ray diagnostic access. 3D electromagnetic si mulations using ANSYS Maxwell have been completed in order to explore the current distributions within the helical conduction paths, the inter - wire dielectric strength properties, and the thermal properties of the helical conduction paths during premagneti zation (%7E1 MA in 100ns). Th ree liner designs , of varying peak field strength, and associated varying risk of dielectric breakdown, will soon be tested in experiments on the %7E 1 MA, 100ns Mykonos facility. Experiments will measure B z (t) inside of the line r and assess failure mechanisms.

More Details

High energy X-ray pinhole imaging at the Z facility

Review of Scientific Instruments

McPherson, Leroy A.; Ampleford, David A.; Coverdale, Christine A.; Argo, J.W.; Owen, Albert C.; Jaramillo, Deanna M.

A new high photon energy (hν > 15 keV) time-integrated pinhole camera (TIPC) has been developed as a diagnostic instrument at the Z facility. This camera employs five pinholes in a linear array for recording five images at once onto an image plate detector. Each pinhole may be independently filtered to yield five different spectral responses. The pinhole array is fabricated from a 1-cm thick tungsten block and is available with either straight pinholes or conical pinholes. Each pinhole within the array block is 250 μm in diameter. The five pinholes are splayed with respect to each other such that they point to the same location in space, and hence present the same view of the radiation source at the Z facility. The fielding distance from the radiation source is 66 cm and the nominal image magnification is 0.374. Initial experimental results from TIPC are shown to illustrate the performance of the camera.

More Details

Fundamental studies on initiation and evolution of multi-channel discharges and their application to next generation pulsed power machines

Schwarz, Jens S.; Savage, Mark E.; Lucero, Diego J.; Jaramillo, Deanna M.; Seals, Kelly G.; Pitts, Todd A.; Hautzenroeder, Brenna M.; Laine, Mark R.; Karelitz, David B.; Porter, John L.

Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable for future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.

More Details

Advances in pulsed-power-driven radiography system design

Maenchen, John E.; Cordova, S.; Bohlken, Fawn A.; Hahn, Kelly D.; Jaramillo, Deanna M.; Molina, I.; Portillo, Salvador; Madrid, Elizabeth A.; Rovang, Dean C.; Sceiford, Matthew S.

Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

More Details
7 Results
7 Results