Publications

89 Results
Skip to search filters

Development of a cryogenically cooled platform for the Magnetized Liner Inertial Fusion (MagLIF) Program

Review of Scientific Instruments

Awe, T.J.; Shelton, Keegan P.; Sefkow, Adam B.; Lamppa, Derek C.; Baker, J.L.; Rovang, Dean C.; Robertson, Grafton K.

A cryogenically cooled hardware platform has been developed and commissioned on the Z Facility at Sandia National Laboratories in support of the Magnetized Liner Inertial Fusion (MagLIF) Program. MagLIF is a magneto-inertial fusion concept that employs a magnetically imploded metallic tube (liner) to compress and inertially confine premagnetized and preheated fusion fuel. The fuel is preheated using a ∼2 kJ laser that must pass through a ∼1.5-3.5-μm-thick polyimide "window" at the target's laser entrance hole (LEH). As the terawatt-class laser interacts with the dense window, laser plasma instabilities (LPIs) can develop, which reduce the preheat energy delivered to the fuel, initiate fuel contamination, and degrade target performance. Cryogenically cooled targets increase the parameter space accessible to MagLIF target designs by allowing nearly 10 times thinner windows to be used for any accessible gas density. Thinner LEH windows reduce the deleterious effects of difficult to model LPIs. The Z Facility's cryogenic infrastructure has been significantly altered to enable compatibility with the premagnetization and fuel preheat stages of MagLIF. The MagLIF cryostat brings the liquid helium coolant directly to the target via an electrically resistive conduit. This design maximizes cooling power while allowing rapid diffusion of the axial magnetic field supplied by external Helmholtz-like coils. A variety of techniques have been developed to mitigate the accumulation of ice from vacuum chamber contaminants on the cooled LEH window, as even a few hundred nanometers of ice would impact laser energy coupling to the fuel region. The MagLIF cryostat has demonstrated compatibility with the premagnetization and preheat stages of MagLIF and the ability to cool targets to liquid deuterium temperatures in approximately 5 min.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David A.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias G.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, Patrick K.; Laity, George R.; Martin, Matthew; Nagayama, Taisuke N.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul S.; Schwarz, Jens S.; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund Y.; Cuneo, M.E.; Jones, Brent M.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel S.; Stygar, William A.

Abstract not provided.

Overview of Neutron diagnostic measurements for MagLIF Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

DIAGNOSING MAGNETIZED LINER INERTIAL FUSION EXPERIMENTS USING NEUTRON DIAGNOSTICS ON THE Z ACCELERATOR

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

Journal of Physics: Conference Series

Hahn, K.D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, S.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul S.; Harding, Eric H.; Jennings, C.A.; Awe, T.J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, J.A.; Cuneo, M.E.; Glebov, V.Y.; Harvey-Thompson, Adam J.; Herrman, M.C.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Lash, Joel S.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

More Details

Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

McBride, Ryan D.; Bliss, David E.; Gomez, Matthew R.; Hansen, Stephanie B.; Martin, Matthew; Jennings, Christopher A.; Slutz, Stephen A.; Rovang, Dean C.; Knapp, Patrick K.; Schmit, Paul S.; Awe, Thomas J.; Hess, Mark H.; Lemke, Raymond W.; Dolan, Daniel H.; Lamppa, Derek C.; Jobe, Marc R.; Fang, Lu F.; Hahn, Kelly D.; Chandler, Gordon A.; Cooper, Gary W.; Ruiz, Carlos L.; Robertson, Grafton K.; Cuneo, M.E.; Sinars, Daniel S.; Tomlinson, Kurt T.; Smith, Gary S.; Paguio, Reny P.; Intrator, Tom P.; Weber, Thomas E.; Greenly, John B.

We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing and fabricating novel micro B-dot probes to measure B z ( t ) inside of an imploding liner. In one approach, the micro B-dot loops were fabricated on a printed circuit board (PCB). The PCB was then soldered to off-the-shelf 0.020- inch-diameter semi-rigid coaxial cables, which were terminated with standard SMA connectors. These probes were recently tested using the COBRA pulsed power generator (0-1 MA in 100 ns) at Cornell University. In another approach, we are planning to use new multi-material 3D printing capabilities to fabricate novel micro B-dot packages. In the near future, we plan to 3D print these probes and then test them on the COBRA generator. With successful operation demonstrated at 1-MA, we will then make plans to use these probes on a 20-MA Z experiment.

More Details

Exploring magnetized liner inertial fusion with a semi-analytic model

McBride, Ryan D.; Slutz, Stephen A.; Sinars, Daniel S.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle C.; Schmit, Paul S.; Knapp, Patrick K.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew; Awe, Thomas J.; Rovang, Dean C.; Lamppa, Derek C.; Peterson, Kyle J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, M.E.

Abstract not provided.

Multi-pulse electron diode development for flash radiography

Digest of Technical Papers-IEEE International Pulsed Power Conference

Mazarakis, Michael G.; Cuneo, M.; Hess, M.; Kiefer, Mark L.; Leckbee, Joshua L.; McKee, R.; Rovang, Dean C.

Presently the Self Magnetic Pinch (SMP) diode is successfully utilized for flash radiography with pulsed power drivers. However, it is not capable of more than one pulse. Multi-pulse single-Axis radiography is most preferred since it provides images of time-evolving dynamic targets. In an SMP diode, because the anode cathode (A-K) gap is very small (∼1-2 cm), the debris from the anode converter target arrives soon after the first pulse and completely destroy the cathode electron emitter, and thus the diode cannot produce a second pulse. We propose a feasibility study to scientifically evaluate the idea of decoupling the anode converter from the cathode electron emitter. This work will be based on two successful previous works we have accomplished: first, making a very small pencil-like beam in a magnetically immersed foilless diode (M.G. Mazarakis et al., Applied Physics Letters, 7, pp. 832 (1996)); and second, successfully demonstrating the two-pulse operation of a foilless diode with the RIIM accelerator (M. G. Mazarakis et al., Applied Physics 64 part I pp. 4815, (1988) Our approach will combine the above experimentally demonstrated successful work. The generated beam of 40-50 kA will be propagated in the same diode magnetic solenoid for a sufficient distance before striking the converter target. This way the diode could be multi-pulsed before the target debris reaches the cathode. Although the above describes the option of a foilless diode and a solenoidal transport system, a similar design could be made for a non-immersed low emittance 10 kA velvet emitter foilless diode.

More Details

Fusion-Neutron Measurements for Magnetized Liner Inertial Fusion Experiments on the Z Accelerator

Hahn, Kelly D.; Chandler, Gordon A.; Ruiz, Carlos L.; Cooper, Gary W.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hansen, Stephanie B.; Knapp, Patrick K.; Schmit, Paul S.; Harding, Eric H.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Torres, Jose A.; Bur, James A.; Cuneo, M.E.; Glebov, V.Yu.; Harvey-Thompson, Adam J.; Herrmann, M.C.H.; Hess, Mark H.; Johns, Owen J.; Jones, Brent M.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Reneker, Joseph R.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Smith, Ian C.; Styron, Jedediah D.; Vesey, Roger A.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, Kyle J.; Awe, Thomas J.; Hansen, Stephanie B.; Hahn, Kelly D.; Knapp, Patrick K.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew; McBride, Ryan D.; Porter, John L.; Rochau, G.A.; Harding, Eric H.

Abstract not provided.

X-ray Imaging of MagLIF Experiments Using a Spherically Bent Crystal Optic

Harding, Eric H.; Gomez, Matthew R.; Slutz, Stephen A.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Schollmeier, Marius; Peterson, Kyle J.; Awe, Thomas J.; Hansen, Stephanie B.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew; McBride, Ryan D.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

McBride, Ryan D.; Slutz, Stephen A.; Sinars, Daniel S.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle C.; Rovang, Dean C.; Lamppa, Derek C.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Schmit, Paul S.; Knapp, Patrick K.; Awe, Thomas J.; Jennings, Christopher A.; Martin, Matthew; Peterson, Kyle J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, M.E.

Abstract not provided.

Experimental Progress in Magnetized Liner Inertial Fusion (MagLIF)

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Peterson, Kyle J.; Hansen, Stephanie B.; Hahn, Kelly D.; Knapp, Patrick K.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Awe, Thomas J.; Harding, Eric H.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Recent progress in Magnetized Liner Inertial Fusion (MagLIF) experiments

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Peterson, Kyle J.; Awe, Thomas J.; Hansen, Stephanie B.; Harding, Eric H.; Hahn, Kelly D.; Knapp, Patrick K.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Jennings, Christopher A.; Smith, Ian C.; Rovang, Dean C.; Chandler, Gordon A.; Martin, Matthew; McBride, Ryan D.; Porter, John L.; Rochau, G.A.

Abstract not provided.

Magnetized Liner Inertial Fusion on the Z Pulsed-Power Accelerator

McBride, Ryan D.; Sinars, Daniel S.; Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Awe, Thomas J.; Peterson, Kyle J.; Knapp, Patrick K.; Schmit, Paul S.; Rovang, Dean C.; Geissel, Matthias G.; Vesey, Roger A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew; Lemke, Raymond W.; Hahn, Kelly D.; Harding, Eric H.; Cuneo, M.E.; Porter, John L.; Rochau, G.A.; Stygar, William A.

Abstract not provided.

Effects of magnetization on fusion product trapping and secondary neutron spectra

Physics of Plasmas

Knapp, P.F.; Schmit, Paul S.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, K.D.; Sinars, Daniel S.; Peterson, Kyle J.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Harding, Eric H.; Jennings, C.A.; Desjarlais, M.P.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Porter, John L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, M.C.

By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG cm, a ∼ 14x increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

More Details

Diagnosing magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, S.A.; Sinars, Daniel S.; Hahn, K.D.; Harding, Eric H.; Knapp, P.F.; Schmit, Paul S.; Awe, T.J.; McBride, Ryan D.; Jennings, C.A.; Geissel, Matthias G.; Harvey-Thompson, Adam J.; Peterson, K.J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Herrmann, M.C.; Hess, Mark H.; Johns, Owen J.; Lamppa, Derek C.; Martin, M.R.; Porter, J.L.; Robertson, G.K.; Rochau, G.A.; Ruiz, C.L.; Savage, M.E.; Smith, I.C.; Stygar, W.A.; Vesey, R.A.; Blue, B.E.; Ryutov, D.; Schroen, D.G.; Tomlinson, K.

Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

More Details

Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

Physics of Plasmas

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Hahn, K.D.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul S.; Ruiz, Carlos L.; Sinars, Daniel S.; Harding, Eric H.; Jennings, C.A.; Awe, T.J.; Geissel, Matthias G.; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, M.C.; Hess, Mark H.; Lamppa, Derek C.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Savage, Mark E.; Schroen, D.G.; Stygar, William A.; Vesey, Roger A.

The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100-ns Z machine, the 2.5-kJ, 1 TW Z Beamlet laser, and the 10-T Applied B-field on Z system. Despite an estimated implosion velocity of only 70-km/s in these experiments, electron and ion temperatures at stagnation were as high as 3-keV, and thermonuclear deuterium-deuterium neutron yields up to 2-×-1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8-mm) and lasted approximately 2-ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4-g/cm3. In these experiments, up to 5-×-1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2-mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1-keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

More Details

Recent Progress and Future Potential of Magnetized Liner Inertial Fusion (MagLIF)

Sandia journal manuscript; Not yet accepted for publication

Slutz, Stephen A.; Gomez, Matthew R.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Herrmann, M.C.H.; Hess, Mark H.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary W.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

The standard approaches to inertial confinement fusion (ICF) rely on implosion velocities greater than 300 km/s and spherical convergence to achieve the high fuel temperatures (T > 4 keV) and areal densities (ρr > 0.3 g/cm2) required for ignition1. Such high velocities are achieved by heating the outside surface of a spherical capsuleeither directly with a large number of laser beams (Direct Drive) or with x-rays generated within a hohlraum (Indirect Drive). A much more energetically efficient approach is to use the magnetic pressure generated by a pulsed power machine to directly drive an implosion. In this approach 5-10% of the stored energy can be converted to the implosion of a metal tube generally referred to as a “liner”. However, the implosion velocity is not very high 70-100 km/s and the convergence is cylindrical (rather than spherical) making it more difficult to achieve the high temperatures and areal densities needed for ignition.

More Details

Experimental verification of the Magnetized Liner Inertial Fusion (MagLIF) concept

ICOPS/BEAMS 2014 - 41st IEEE International Conference on Plasma Science and the 20th International Conference on High-Power Particle Beams

Gomez, Matthew R.; Slutz, S.A.; Sefkow, Adam B.; Awe, T.J.; Chandler, Gordon A.; Cuneo, M.E.; Geissel, Matthias G.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Jennings, C.A.; Knapp, P.F.; Lamppa, Derek C.; Martin, M.R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, J.L.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Schmit, Paul S.; Sinars, Daniel S.; Smith, Ian C.

Abstract not provided.

Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

Review of Scientific Instruments

Rovang, Dean C.; Lamppa, Derek C.; Cuneo, M.E.; Owen, A.C.; Mckenney, John M.; Johnson, Drew J.; Radovich, S.; Kaye, Ronald J.; McBride, Ryan D.; Alexander, Charles S.; Awe, T.J.; Slutz, S.A.; Sefkow, Adam B.; Haill, Thomas A.; Jones, Peter A.; Argo, J.W.; Dalton, D.G.; Robertson, Grafton K.; Waisman, Eduardo M.; Sinars, Daniel S.; Meissner, J.; Milhous, M.; Nguyen, D.N.; Mielke, C.H.

Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

More Details

Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

Physical Review Letters

Gomez, Matthew R.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Hess, Mark H.; Slutz, Stephen A.; Johns, Owen J.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Sefkow, Adam B.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

More Details

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion experiments on the Z facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Demonstration of fusion relevant conditions in Magnetized Liner Inertial Fusion Experiments on the Z Facility

Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Sinars, Daniel S.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, Patrick K.; Schmit, Paul S.; Jennings, Christopher A.; Awe, Thomas J.; Geissel, Matthias G.; Rovang, Dean C.; Chandler, Gordon A.; Cuneo, M.E.; Harvey-Thompson, Adam J.; Herrmann, Mark H.; Lamppa, Derek C.; Martin, Matthew; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, G.A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Vesey, Roger A.

Abstract not provided.

Modified 3D-helix-like instability structure for imploding Z-pinch liners that are premagnetized with a uniform axial field

Awe, Thomas J.; Jennings, Christopher A.; McBride, Ryan D.; Cuneo, M.E.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Sinars, Daniel S.; Slutz, Stephen A.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Herrmann, Mark H.; Jones, Michael J.; Knapp, Patrick K.; Mckenney, John M.; Peterson, Kyle J.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Schmit, Paul S.; Sefkow, Adam B.; Stygar, William A.; Vesey, Roger A.; Yu, Edmund Y.; Tomlinson, Kurt T.; Schroen, Diana G.

Abstract not provided.

Results Progress and Plans for Magnetized Liner Inertial Fusion (MagLIF) on Z

Peterson, Kyle J.; Slutz, Stephen A.; Sinars, Daniel S.; Sefkow, Adam B.; Gomez, Matthew R.; Awe, Thomas J.; Harvey-Thompson, Adam J.; Geissel, Matthias G.; Schmit, Paul S.; Smith, Ian C.; McBride, Ryan D.; Rovang, Dean C.; Knapp, Patrick K.; Hansen, Stephanie B.; Jennings, Christopher A.; Harding, Eric H.; Porter, John L.; Vesey, Roger A.; Blue, Brent B.; Schroen, Diana G.; Tomlinson, Kurt T.

Abstract not provided.

Modified helix-like instability structure on imploding z-pinch liners that are pre-imposed with a uniform axial magnetic field

Physics of Plasmas

Awe, Thomas J.; Owen, Albert C.; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Jones, Michael J.; Mckenney, John M.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; McBride, Ryan D.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Sinars, Daniel S.; Slutz, Stephen A.; Cuneo, M.E.

Abstract not provided.

Observations of Modified Three-Dimensional Instability Structure for Imploding z -Pinch Liners that are Premagnetized with an Axial Field

Physical Review Letters

McBride, Ryan D.; Gomez, Matthew R.; Hansen, Stephanie B.; Herrmann, Mark H.; Mckenney, John M.; Robertson, Grafton K.; Rochau, G.A.; Savage, Mark E.; Stygar, William A.; Jennings, Christopher A.; Lamppa, Derek C.; Martin, Matthew; Rovang, Dean C.; Slutz, Stephen A.; Cuneo, M.E.; Owen, Albert C.; Sinars, Daniel S.

Novel experimental data are reported that reveal helical instability formation on imploding z -pinch liners that are premagnetized with an axial field. Such instabilities differ dramatically from the mostly azimuthally symmetric instabilities that form on unmagnetized liners. The helical structure persists at nearly constant pitch as the liner implodes. This is surprising since, at the liner surface, the azimuthal drive field presumably dwarfs the axial field for all but the earliest stages of the experiment. These fundamentally 3D results provide a unique and challenging test for 3D-magnetohydrodynamics simulations.

More Details

Fielding the magnetically applied pressure-shear technique on the Z accelerator (completion report for MRT 4519)

Alexander, Charles S.; Haill, Thomas A.; Dalton, Devon D.; Rovang, Dean C.; Lamppa, Derek C.

The recently developed Magnetically Applied Pressure-Shear (MAPS) experimental technique to measure material shear strength at high pressures on magneto-hydrodynamic (MHD) drive pulsed power platforms was fielded on August 16, 2013 on shot Z2544 utilizing hardware set A0283A. Several technical and engineering challenges were overcome in the process leading to the attempt to measure the dynamic strength of NNSA Ta at 50 GPa. The MAPS technique relies on the ability to apply an external magnetic field properly aligned and time correlated with the MHD pulse. The load design had to be modified to accommodate the external field coils and additional support was required to manage stresses from the pulsed magnets. Further, this represents the first time transverse velocity interferometry has been applied to diagnose a shot at Z. All subsystems performed well with only minor issues related to the new feed design which can be easily addressed by modifying the current pulse shape. Despite the success of each new component, the experiment failed to measure strength in the samples due to spallation failure, most likely in the diamond anvils. To address this issue, hydrocode simulations are being used to evaluate a modified design using LiF windows to minimize tension in the diamond and prevent spall. Another option to eliminate the diamond material from the experiment is also being investigated.

More Details

Pulsed-power driven inertial confinement fusion development at Sandia National Laboratories

Proposed for publication in 5th Special Issue of the IEEE Transactions on Plasma Science Z-Pinch Plasmas.

Cuneo, M.E.; Mazarakis, Michael G.; Lamppa, Derek C.; Kaye, Ronald J.; Nakhleh, Charles N.; Bailey, James E.; Hansen, Stephanie B.; McBride, Ryan D.; Herrmann, Mark H.; Lopez, A.; Peterson, Kyle J.; Ampleford, David A.; Jones, Michael J.; Savage, Mark E.; Jennings, Christopher A.; Martin, Matthew; Slutz, Stephen A.; Lemke, Raymond W.; Christenson, Peggy J.; Sweeney, Mary A.; Jones, Brent M.; Yu, Edmund Y.; McPherson, Leroy A.; Harding, Eric H.; Knapp, Patrick K.; Gomez, Matthew R.; Awe, Thomas J.; Stygar, William A.; Leeper, Ramon J.; Ruiz, Carlos L.; Chandler, Gordon A.; Mckenney, John M.; Owen, Albert C.; McKee, George R.; Matzen, M.K.; Leifeste, Gordon T.; Atherton, B.W.; Vesey, Roger A.; Smith, Ian C.; Geissel, Matthias G.; Rambo, Patrick K.; Sinars, Daniel S.; Sefkow, Adam B.; Rovang, Dean C.; Rochau, G.A.

Abstract not provided.

Pulsed power driven Magneto-Rayleigh-Taylor experiments

Slutz, Stephen A.; Herrmann, Mark H.; Vesey, Roger A.; Sefkow, Adam B.; Sinars, Daniel S.; Rovang, Dean C.; Peterson, Kyle J.; Cuneo, M.E.

Numerical simulations indicate that significant fusion yields (>100 kJ) may be obtained by pulsed-power-driven implosions of cylindrical metal liners onto magnetized and preheated deuterium-tritium fuel. The primary physics risk to this approach is the Magneto-Rayleigh-Taylor (MRT) instability, which operates during both the acceleration and deceleration phase of the liner implosion. We have designed and performed some experiments to study the MRT during the acceleration phase, where the light fluid is purely magnetic. Results from our first series of experiments and plans for future experiments will be presented. According to simulations, an initial axial magnetic field of 10 T is compressed to >100 MG within the liner during the implosion. The magnetic pressure becomes comparable to the plasma pressure during deceleration, which could significantly affect the growth of the MRT instability at the fuel/liner interface. The MRT instability is also important in some astronomical objects such as the Crab Nebula (NGC1962). In particular, the morphological structure of the observed filaments may be determined by the ratio of the magnetic to material pressure and alignment of the magnetic field with the direction of acceleration [Hester, ApJ, 456, 225 1996]. Potential experiments to study this MRT behavior using the Z facility will be presented.

More Details

Megagauss field generation for high-energy-density plasma science experiments

Struve, Kenneth W.; Rovang, Dean C.

There is a need to generate magnetic fields both above and below 1 megagauss (100 T) with compact generators for laser-plasma experiments in the Beamlet and Petawatt test chambers for focused research on fundamental properties of high energy density magnetic plasmas. Some of the important topics that could be addressed with such a capability are magnetic field diffusion, particle confinement, plasma instabilities, spectroscopic diagnostic development, material properties, flux compression, and alternate confinement schemes, all of which could directly support experiments on Z. This report summarizes a two-month study to develop preliminary designs of magnetic field generators for three design regimes. These are, (1) a design for a relatively low-field (10 to 50 T), compact generator for modest volumes (1 to 10 cm3), (2) a high-field (50 to 200 T) design for smaller volumes (10 to 100 mm3), and (3) an extreme field (greater than 600 T) design that uses flux compression. These designs rely on existing Sandia pulsed-power expertise and equipment, and address issues of magnetic field scaling with capacitor bank design and field inductance, vacuum interface, and trade-offs between inductance and coil designs.

More Details

The role of ions during stable impedance operation of the immersed- B z diode at 4 to 5 MV

Physics of Plasmas

Rovang, Dean C.; Bruner, N.; Maenchen, John E.; Oliver, Bryan V.; Portillo, Salvador; Puetz, E.; Rose, D.V.; Welch, D.R.

The immersed- Bz diode is being developed as a high-brightness, flash x-ray radiography source at Sandia National Laboratories. This diode is a foil-less electron-beam diode with a long, thin, needlelike cathode that is inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces forward-directed bremsstrahlung. In addition, electron beam heating of the anode produces surface plasmas allowing ion emission. Two different operating regimes for this diode have been identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous operating regime characterized by a dramatic impedance collapse where the total diode current greatly exceeds the bipolar limit. Data from a comprehensive series of experiments fielded at 4 and 5 MV, where the diode operates in the nominal or stable impedance regime, with beam currents ranging from 20-40 kA on target are presented. In this mode, both the measured diode current and experimental radiation production are consistent with physics based models including two-dimensional particle-in-cell simulations. The analysis indicates that intermediate mass ions (e.g., 12-18 amu) control the nominal impedance evolution rather than expected lighter mass ions such as hydrogen. © 2007 American Institute of Physics.

More Details

Development and testing of immersed-Bz diodes with cryogenic anodes

Digest of Technical Papers-IEEE International Pulsed Power Conference

Rovang, Dean C.; Van De Valde, D.; Gregerson, D.; Puetz, E.; Bruner, N.; Cooper, G.; Cordova, S.; Droemer, D.; Hahn, K.; Johnston, Mark D.; Maenchen, John E.; McLean, J.; Molina, I.; Oliver, B.; O'Malley, J.; Portillo, Salvador; Welch, D.

Sandia National Laboratories is investigating and developing high-dose, high-brightness flash radiographic sources. The immersed-Bz diode employs large-bore, high-field solenoid magnets to help guide and confine an intense electron beam from a needle-like cathode "immersed" in the axial field of the magnet. The electron beam is focused onto a high-atomic-number target/anode to generate an intense source of bremsstrahlung X-rays. Historically, these diodes have been unable to achieve high dose (> 500 rad @ m) from a small spot (< 3 mm diameter). It is believed that this limitation is due in part to undesirable effects associated with the interaction of the electron beam with plasmas formed at either the anode or the cathode. Previous research concentrated on characterizing the behavior of diodes, which used untreated, room temperature (RT) anodes. Research is now focused on improving the diode performance by modifying the diode behavior by using cryogenic anodes that are coated in-situ with frozen gases. The objective of these cryogenically treated anodes is to control and limit the ion species of the anode plasma formed and hence the species of the counter-streaming ions that can interact with the electron beam. Recent progress in the development, testing and fielding of the cryogenically cooled immersed diodes at Sandia is described. ©2005 IEEE.

More Details

Demonstration of the self-magnetic-pinch diode as an X-ray source for flash core-punch radiography

Portillo, Salvador; Oliver, Bryan V.; Cordova, S.; Rovang, Dean C.

Minimization of the radiographic spot size and maximization of the radiation dose is a continuing long-range goal for development of electron beam driven X-ray radiography sources. In collaboration with members of the Atomic Weapons Establishment(AWE), Aldermaston UK, the Advanced Radiographic Technologies Dept. 1645 is conducting research on the development of X-ray sources for flash core-punch radiography. The Hydrodynamics Dept. at AWE has defined a near term radiographic source requirement for scaled core-punch experiments to be 250 rads{at}m with a 2.75 mm source spot-size. As part of this collaborative effort, Dept. 1645 is investigating the potential of the Self-Magnetic-Pinched (SMP) diode as a source for core-punch radiography. Recent experiments conducted on the RITS-6 accelerator [1,2] demonstrated the potential of the SMP diode by meeting and exceeding the near term radiographic requirements established by AWE. During the demonstration experiments, RITS-6 was configured with a low-impedance (40 {Omega}) Magnetically Insulated Transmission Line (MITL), which provided a 75-ns, 180-kA, 7.5-MeV forward going electrical pulse to the diode. The use of a low-impedance MITL enabled greater power coupling to the SMP diode and thus allowed for increased radiation output. In addition to reconfiguring the driver (accelerator), geometric changes to the diode were also performed which allowed for an increase in dose production without sacrificing the time integrated spot characteristics. The combination of changes to both the pulsed power driver and the diode significantly increased the source x-ray intensity.

More Details

Z-Beamlet: a multi-KJ TW-class laser for backlit x-radiography applications on the Z-Accelerator

Atherton, B.W.; Gonzales, Rita A.; Gurrieri, Thomas G.; Herrmann, Mark H.; Mulville, Thomas D.; Neely, Kelly A.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Smith, Ian C.; Schwarz, Jens S.; Simpson, Walter W.; Sinars, Daniel S.; Speas, Christopher S.; Tafoya-Porras, Belinda T.; Wenger, D.F.; Young, Ralph W.; Adams, Richard G.; Bennett, Guy R.; Campbell, David V.; Carroll, Malcolm; Claus, Liam D.; Edens, Aaron E.; Geissel, Matthias G.

Abstract not provided.

X-ray optics on the Z-Accelerator backlit with the Z-Beamlet Laser & Z-Petawatt Laser systems

Gonzales, Rita A.; Gurrieri, Thomas G.; Herrmann, Mark H.; Mulville, Thomas D.; Neely, Kelly A.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Schwarz, Jens S.; Adams, Richard G.; Simpson, Walter W.; Sinars, Daniel S.; Smith, Ian C.; Speas, Christopher S.; Tafoya-Porras, Belinda T.; Wenger, D.F.; Young, Ralph W.; Edens, Aaron E.; Atherton, B.W.; Bennett, Guy R.; Campbell, David V.; Carroll, Malcolm; Claus, Liam D.; Geissel, Matthias G.

Abstract not provided.

1- and 2-frame monochromatic x-ray imaging of NIF-like capsules on Z and future higher-energy higher-resolution 2- & 4-frame x-radiography plans for ZR

Bennett, Guy R.; Campbell, David V.; Claus, Liam D.; Foresi, James S.; Johnson, Drew J.; Jones, Michael J.; Keller, Keith L.; Leifeste, Gordon T.; McPherson, Leroy A.; Mulville, Thomas D.; Neely, Kelly A.; Sinars, Daniel S.; Herrmann, Mark H.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Simpson, Walter W.; Speas, Christopher S.; Wenger, D.F.; Smith, Ian C.; Cuneo, M.E.; Adams, Richard G.; Atherton, B.W.; Barnard, Wilson J.; Beutler, David E.; Burr, Robert A.

Abstract not provided.

Operational characteristics and analysis of the immersed-Bz diode on RITS-3

Rovang, Dean C.; Johnston, Mark D.; Maenchen, John E.; Oliver, Bryan V.; Portillo, Salvador; Madrid, Elizabeth A.

The immersed-B{sub z} diode is being developed as a high-brightness, flash x-ray radiography source. This diode is a foil-less electron-beam diode with a long, thin, needle-like cathode inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces bremsstrahlung. We report on an extensive series of experiments where an immersed-B{sub z} diode was fielded on the RITS-3 pulsed power accelerator, a 3-cell inductive voltage generator that produced peak voltages between 4 and 5 MV, {approx}140 kA of total current, and power pulse widths of {approx}50 ns. The diode is a high impedance device that, for these parameters, nominally conducts {approx}30 kA of electron beam current. Diode operating characteristics are presented and two broadly characterized operating regimes are identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous impedance collapse regime where the total diode current is in excess of the bipolar limit and up to the full accelerator current. The operating regimes are approximately separated by cathode diameters greater than {approx}3 mm for the nominal regime and less than {approx} 3 mm for the anomalous impedance collapse regime. This report represents a compilation of data taken on RITS-3. Results from key parameter variations are presented in the main body of the report and include cathode diameter, anode-cathode gap, and anode material. Results from supporting parameter variations are presented in the appendices and include magnetic field strength, prepulse, pressure and accelerator variations.

More Details

The influence of anode/target ion species on the magnetically immersed

Rovang, Dean C.; Madrid, Elizabeth A.

The magnetically immersed (B{sub z}) diode is being investigated as a source for pulsed-power driven flash radiography. Experiments fielding this diode have revealed a limit on its achievable current density on target. Either a small spot produces a low dose, or a high dose is achieved with a large spot. It has been proposed that this limit is due to non-protonic ions liberated from the anode surface and subsequently ionizing to higher states. The three-dimensional particle-in-cell code LSP is used to investigate this proposal. Data from the recent immersed diode experiments conducted on the RITS-3 accelerator are compared to LSP models of the experimental configuration, including the B{sub z} field map. We report on how the non-protonic and protonic ion models compare to data, and proposals for future investigation.

More Details

Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research

Johnston, Mark D.; Hahn, Kelly D.; Rovang, Dean C.; Portillo, Salvador; Maenchen, John E.

Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

More Details

Plasma-filled focusing cell for radiographic paraxial diodes on RITS

Conference Record of the International Power Modulator Symposium and High Voltage Workshop

Hahn, K.; Maenchen, John E.; Cordova, S.; Molina, I.; Portillo, Salvador; Rovang, Dean C.; Schamiloglu, E.; Welch, D.R.; Oliver, B.V.; Rose, D.V.

Paraxial diodes have been a stronghold for high-brightness, flash x-ray radiography. In its traditional configuration, an electron beam impinges onto an anode foil, entering a gas-filled transport cell. Within the cell, the beam is focused into a small spot onto a high-Z target to generate x-rays for the radiographic utility. Simulations using Lsp, a particle-in-cell code, have shown that within the gas-filled focusing cell the electron beam spot location sweeps axially during the course of the beam pulse. The result is a larger radiographic spot than is desirable. Lsp has also shown that replacing the gas-filled cell with a fully ionized plasma on the order of 1016 cm-3 will prevent the spot from significant beam sweeping, thus resulting in a smaller, more stable radiographic spot size. Sandia National Laboratories (SNL) is developing a plasma-filled focusing cell for future paraxial diode experiments. A z-discharge in a hydrogen fill is used to generate a uniform, highly ionized plasma. Laser interferometry is the key diagnostic to determine electron density in a light lab setting and during future paraxial diode shots on SNL's RITS-3 accelerator. A time-resolved spot diagnostic will also be implemented during diode shots to measure the change in spot size during the course of the pulse. © 2004 IEEE.

More Details

Advances in pulsed-power-driven radiography system design

Maenchen, John E.; Cordova, S.; Bohlken, Fawn A.; Hahn, Kelly D.; Jaramillo, Deanna M.; Molina, I.; Portillo, Salvador; Madrid, Elizabeth A.; Rovang, Dean C.; Sceiford, Matthew S.

Flash x-ray radiography has undergone a transformation in recent years with the resurgence of interest in compact, high intensity pulsed-power-driven electron beam sources. The radiographic requirements and the choice of a consistent x-ray source determine the accelerator parameters, which can be met by demonstrated Induction Voltage Adder technologies. This paper reviews the state of the art and the recent advances which have improved performance by over an order of magnitude in beam brightness and radiographic utility.

More Details

1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

Proceedings of SPIE - The International Society for Optical Engineering

Sinars, Daniel S.; Wenger, D.F.; Cuneo, M.E.; Bennett, Guy R.; Anderson, Jessica E.; Porter, John L.; Rambo, Patrick K.; Rovang, Dean C.; Smith, Ian C.

Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ~0.6 eV spectral bandpass, 10 μm spatial resolution, and a 4 mm by 20 mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser (λ=527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

More Details

Development of a dynamic spot size diagnostic for flash radiographic x-ray sources

Digest of Technical Papers-IEEE International Pulsed Power Conference

Lutz, Stephen; Droemer, Darryl; Devore, Douglas; Rovang, Dean C.; Portillo, Salvador; Maenchen, John E.

There has been considerable work in recent years in the development of high-brightness, high-dose flash x-ray radiographic sources. Spot size is one of several parameters that helps characterize source performance and provides a figure of merit to assess the suitability of various sources to specific experimental requirements. Time-integrated spot-size measurements using radiographic film and a high-Z rolled-edge object have been used for several years with great success. The Advanced Radiographic Technologies program thrust to improve diode performance requires extending both modeling and experimental measurements into the transient time domain. A new Time Resolved Spot Detector (TRSD) is under development to provide this information. In this paper we report the initial results of the performance of a 148-element scintillating fiber array that is fiber-optically coupled to a gated streak camera. Spatial and temporal resolution results are discussed and the data obtained from the Sandia National Laboratories (SNL) RITS-3 (Radiographic Integrated Test Stand) accelerator are presented.

More Details

Survey of plasma diagnostic techniques applicable to radiographic diodes

Digest of Technical Papers-IEEE International Pulsed Power Conference

Schamiloglu, E.; Hahn, K.; Rovang, Dean C.; Maenchen, John E.; Cordova, S.; Molina, I.; Welch, Dale R.; Rose, D.V.; Oliver, Bryan V.; Weber, B.V.; Ponce, D.; Hinshelwood, D.D.

Plasmas are ubiquitous in the high-power electron beam diodes used for radiographic applications. In rod pinch and immersed Bz diodes they are found adjacent to the cathode and anode electrodes, and are suspected of affecting the diodes' impedance characteristics as well as the radiographic spot size. In paraxial diodes, preionized plasmas or beam-formed plasmas are also found in the gas focusing section. A common feature of the plasmas adjacent to the electrodes is that their densities can range from 10 12-1017 cm-3, and their velocity is on the order of 107 cm/s. Researchers from the Naval Research Laboratory have developed a high-sensitivity two-color interferometer that is presently being tested on Gamble II for future use on the Sandia RITS accelerator operating with a Bz diode. This diagnostic is capable of resolving a line-integrated electron density of 2×1012 cm-2, a density that might be capable of even observing the electron beam directly. This paper will present an overview of laser-based and spectroscopic diagnostics that could be used to measure plasmas found in radiographic diodes with spatial and temporal resolutions on the order of 1-5 mm and 5 ns, respectively. Plans for the use of this diagnostic on a preionized plasma cell of a paraxial diode on the Sandia RITS experiment will be discussed.

More Details

Characterization of composite rod-pinch-diode radiographic sources at 5 to 6 MV on Asterix

Digest of Technical Papers-IEEE International Pulsed Power Conference

Mosher, D.; Allen, R.J.; Commisso, R.J.; Swanekamp, S.B.; Young, F.C.; Cooperstein, G.; Vermare, C.; Delvaux, J.; Hordé, Y.; Merle, E.; Nicolas, R.; Noré, D.; Pierret, O.; Rosol, Y.R.; Tailleur, Y.; Véron, L.; Bayol, F.; Garrigues, A.; Delbos, C.; Nicot, G.; Oliver, Bryan V.; Rose, D.V.; Rovang, Dean C.; Maenchen, John E.

Composite-rod-pinch loads on Asterix consisting of hollow aluminum tubes supporting either 1-cm-long, 1-mm-diam blunt-end or tapered gold slugs, or 1.5- to 2-mm-diam gold spheres are characterized. Composite-slug loads have slightly-lower doses than the 1.6- or 2-mm-diam standard rod pinches reported elsewhere and smaller spot sizes, leading to higher measured radiographic figures-of-merit (FOM). The FOM for the gold-sphere loads is substantially-smaller than for the slug loads.

More Details

Retrapping studies on RITS

Hahn, Kelly D.; Welch, Dale R.; Johnson, David L.; Schamiloglu, E.; Hahn, Kelly D.; Maenchen, John E.; Cordova, S.; Molina, I.; Portillo, Salvador; Rovang, Dean C.; Oliver, Bryan V.

SNL is developing intense sources for flash x-ray radiography. The goals of the experiments presented here were to assess power flow issues and to help benchmark the LSP particle-in-cell code used to design the experiment. Comparisons between LSP simulations and experimental data are presented.

More Details

Experimental Comparison of 2-3MV X-Ray Sources for Flash Radiography

Menge, Peter R.; Welch, Dale R.; Johnson, David L.; Maenchen, John E.; Olson, Craig L.; Rovang, Dean C.; Oliver, Bryan V.; Rose, David V.

High-brightness flash x-ray sources are needed for penetrating dynamic radiography for a variety of applications. Various bremsstrahlung source experiments have been conducted on the TriMeV accelerator (3MV, 60 {Omega}, 20 ns) to determine the best diode and focusing configuration in the 2-3 MV range. Three classes of candidate diodes were examined: gas cell focusing, magnetically immersed, and rod pinch. The best result for the gas cell diode was 6 rad at 1 meter from the source with a 5 mm diameter x-ray spot. Using a 0.5 mm diameter cathode immersed in a 17 T solenoidal magnetic field, the best shot produced 4.1 rad with a 2.9 mm spot. The rod pinch diode demonstrated very reproducible radiographic spots between 0.75 and 0.8 mm in diameter, producing 1.2 rad. This represents a factor of eight improvement in the TriMeV flash radiographic capability above the original gas cell diode to a figure of merit (dose/spot diameter) > 1.8 rad/mm. These results clearly show the rod pinch diode to be the choice x-ray source for flash radiography at 2-3 M V endpoint.

More Details
89 Results
89 Results