Publications

6 Results
Skip to search filters

Modal Testing with Piezoelectric Stack Actuators

Conference Proceedings of the Society for Experimental Mechanics Series

Lopp, Garret K.; Siler, David M.; Khan, Moheimin Y.; Owens, Brian C.

Piezoelectric stack actuators can convert an electrical stimulus into a mechanical displacement, which facilitates their use as a vibration-excitation mechanism for modal and vibration testing. Due to their compact nature, they are especially suitable for applications where typical electrodynamic shakers may not be physically feasible, e.g., on small-scale centrifuge/vibration (vibrafuge) testbeds. As such, this work details an approach to extract modal parameters using a distributed set of stack actuators incorporated into a vibrafuge system to provide the mechanical inputs. A derivation that considers a lumped-parameter stack actuator model shows that the transfer functions relating the mechanical responses to the piezoelectric voltages are in a similar form to conventional transfer functions relating the mechanical responses to mechanical forces, which enables typical curve-fitting algorithms to extract the modal parameters. An experimental application consisted of extracting modal parameters from a simple research structure on the centrifuge’s arm excited by the vibrafuge’s stack actuators. A modal test that utilized a modal hammer on the same structure with the centrifuge arm stationary produced similar modal parameters as the modal parameters extracted from the combined-environments testing with low-level inertial loading.

More Details

Model Validation for Combined Inertial Acceleration and Vibration Environments

Conference Proceedings of the Society for Experimental Mechanics Series

Khan, Moheimin Y.; Siler, David M.; Lopp, Garret K.; Owens, Brian C.

Aerospace structures are often subjected to combined inertial acceleration and vibration environments during operation. Traditional qualification approaches independently assess a system under inertial and vibration environments but are incapable of addressing couplings in system response under combined environments. Considering combined environments throughout the design and qualification of a system requires development of both analytical and experimental capabilities. Recent ground testing efforts have improved the ability to replicate flight conditions and aid qualification by incorporating combined centrifuge acceleration and vibration environments in a “vibrafuge” test. Modeling these loading conditions involves the coupling of multiple physical phenomena to accurately capture dynamic behavior. In this work, finite element analysis and model validation of a simple research structure was conducted using Sandia’s SIERRA analysis suite. Geometric preloading effects due to an applied inertial load were modeled using SIERRA coupled analysis capability, and structural dynamics analysis was performed to evaluate the updated structural response compared to responses under vibration environments alone. Results were validated with vibrafuge testing, using a test setup of amplified piezoelectric actuators on a centrifuge arm.

More Details
6 Results
6 Results