Publications

105 Results
Skip to search filters

Electrical Energy Storage Data Submission Guidelines, Version 2

Rosewater, David M.; Preger, Yuliya P.; Mueller, Jacob M.; Atcitty, Stanley A.; Willard, Steve W.; Smith, Morgan S.; Thompson, Joe T.; Long, Dirk L.

Energy storage technologies are positioned to play a substantial role in power delivery systems. They have the potential to serve as an effective new resource to maintain reliability and allow for increased penetration of renewable energy. However, because of their relative infancy, there is a lack of knowledge about how these resources truly operate over time. A data analysis can help ascertain the operational and performance characteristics of these emerging technologies. Rigorous testing and a data analysis are important for all stakeholders to ensure a safe, reliable system that performs predictably on a macro level. Standardizing testing and analysis approaches to verify the performance of energy storage devices, equipment, and systems when integrating them into the grid will improve the understanding and benefit of energy storage over time from technical and economic vantage points. Demonstrating the life-cycle value and capabilities of energy storage systems begins with the data that the provider supplies for the analysis. After a review of energy storage data received from several providers, some of these data have clearly shown to be inconsistent and incomplete, raising the question of their efficacy for a robust analysis. This report reviews and proposes general guidelines, such as sampling rates and data points, that providers must supply for a robust data analysis to take place. Consistent guidelines are the basis of a proper protocol and ensuing standards to (1) reduce the time that it takes for data to reach those who are providing the analysis; (2) allow them to better understand the energy storage installations; and (3) enable them to provide a high-quality analysis of the installations. The report is intended to serve as a starting point for what data points should be provided when monitoring. Readers are encouraged to use the guidance in the report to develop specifications for new systems, as well as enhance current efforts to ensure optimal storage performance. As battery technologies continue to advance and the industry expands, the report will be updated to remain current.

More Details

Discrete logic vs optimized dispatch for energy storage in a microgrid

IEEE Power and Energy Society General Meeting

Headley, Alexander H.; Schenkman, Benjamin L.; Rosewater, David M.

Forward operating base (FOB) microgrids typically use diesel generators with discrete logic control to supply power. However, emerging energy storage systems can be added as spinning reserves and to increase the PV hosting capacity of microgrids to significantly reduce diesel consumption if resources are controlled appropriately. Discrete logic controllers use if/else statements to determine resource dispatch based on inputs such as net load and generator run times but do not account for the capabilities of energy storage systems explicitly. Optimal dispatch controllers could improve upon this architecture by optimizing dispatch based on forecasts of load and generation. However, optimal dispatch controllers are far less intuitive, require more processing power, and the level of potential improvement is unclear.This work seeks to address three points with regards to FOB microgrid operations. Firstly, the impact of energy storage systems on the adoption of solar generation in microgrids is discussed. Secondly, logic is added to the typical discrete controller decision tree to account for energy storage resources. Lastly, fuel savings with energy storage and solar generation using the new discrete control logic and optimal dispatch are compared based on load data measured from a real FOB. The results of these analyses show the potential impact of energy storage on fuel consumption in FOBs and gives guidance as to the appropriate control architecture for management of integrated resource microgrids.

More Details

Determine the Electrode Configuration and Sensitivity of the Enclosure Dimensions when Performing Arc Flash Analysis

Conference Record - Industrial and Commercial Power Systems Technical Conference

Zia, Kaynat; Papasani, Anusha; Rosewater, David M.; Lee, Wei J.

Arc flash hazard prediction methods have become more sophisticated because the knowledge about arc flash phenomenon has advanced since the publication of IEEE Std. 1584-2002 [17]. The IEEE Std. 1584-2018 [13] has added parameters for more accurate arc flash incident energy, arcing current and protection boundary estimation. The parameters in the updated estimation models include electrode configuration, open circuit voltage, bolted fault current, arc duration, gap width, working distance, and enclosure dimension. The sensitivity and effect changes of other parameters have been discussed the previous literatures [8] [9] [11] [2] [12] [15], this paper explains the fundamental theory on the selection of electrode configurations and performs sensitivity analysis of the enclosure dimension, that have been introduced in the IEEE Std. 1584-2018. According to the newly published model for incident energy (IE) estimation, the IE between VCB (Vertical Electrodes inside a metal Box) and HCB (Horizontal Electrodes inside a metal Box) can differ by a factor of two with other parameters constant. Using HCB as the worst-case scenario to determine the personal protection requirements [7] [10] may not be the best practice in all circumstances. This paper provides guidance for electrode configuration selection and a sensitivity analysis for determining a reasonable engineering margin when actual dimension is not available.

More Details

Adaptive modeling process for a battery energy management system

2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020

Rosewater, David M.; Schenkman, Benjamin L.; Santoso, Surya

Battery energy storage systems are often controlled through an energy management system (EMS), which may not have access to detailed models developed by battery manu-facturers. The EMS contains a model of the battery system's performance capabilities that enables it to optimize charge and discharge decisions. In this paper, we develop a process for the EMS to calculate and improve the accuracy of its control model using the operational data produced by the battery system. This process checks for data salience and quality, identifies candidate parameters, and then calculates their accuracy. The process then updates its model of the battery based on the candidate parameters and their accuracy. We use a charge reservoir model with a first order equivalent circuit to represent the battery and a flexible open-circuit-voltage function. The process is applied to one year of operational data from two lithium-ion batteries in a battery system located in Sterling, MA USA. Results show that the process quickly learns the optimal model parameters and significantly reduces modeling uncertainty. Applying this process to an EMS can improve control performance and enable risk-averse control by accounting for variations in capacity and efficiency.

More Details

Risk-Averse Model Predictive Control Design for Battery Energy Storage Systems

IEEE Transactions on Smart Grid

Rosewater, David M.; Baldick, Ross; Santoso, Surya

When batteries supply behind-the-meter services such as arbitrage or peak load management, an optimal controller can be designed to minimize the total electric bill. The limitations of the batteries, such as on voltage or state-of-charge, are represented in the model used to forecast the system's state dynamics. Control model inaccuracy can lead to an optimistic shortfall, where the achievable schedule will be costlier than the schedule derived using the model. To improve control performance and avoid optimistic shortfall, we develop a novel methodology for high performance, risk-averse battery energy storage controller design. Our method is based on two contributions. First, the application of a more accurate, but non-convex, battery system model is enabled by calculating upper and lower bounds on the globally optimal control solution. Second, the battery model is then modified to consistently underestimate capacity by a statistically selected margin, thereby hedging its control decisions against normal variations in battery system performance. The proposed model predictive controller, developed using this methodology, performs better and is more robust than the state-of-the-art approach, achieving lower bills for energy customers and being less susceptible to optimistic shortfall.

More Details

Optimal Control of a Battery Energy Storage System with a Charge-Temperature-Health Model

IEEE Power and Energy Society General Meeting

Rosewater, David M.; Headley, Alexander H.; Mier, Frank A.; Santoso, Surya

Battery energy storage is being installed behind-the-meter to reduce electrical bills while improving power system efficiency and resiliency. This paper demonstrates the development and application of an advanced optimal control method for battery energy storage systems to maximize these benefits. We combine methods for accurately modeling the state-of-charge, temperature, and state-of-health of lithium-ion battery cells into a model predictive controller to optimally schedule charge/discharge, air-conditioning, and forced air convection power to shift a electric customer's consumption and hence reduce their electric bill. While linear state-of-health models produce linear relationships between battery usage and degradation, a non-linear, stress-factor model accounts for the compounding improvements in lifetime that can be achieved by reducing several stress factors at once. Applying this controller to a simulated system shows significant benefits from cooling-in-the-loop control and that relatively small sacrifices in bill reduction performance can yield large increases in battery life. This trade-off function is highly dependent on the battery's degradation mechanisms and what model is used to represent them.

More Details

Battery energy storage state-of-charge forecasting: Models, optimization, and accuracy

IEEE Transactions on Smart Grid

Rosewater, David M.; Ferreira, Summer R.; Schoenwald, David A.; Hawkins, Jonathan; Santoso, Surya

Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This paper presents three advances in BESS SoC forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational data is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. The proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.

More Details

Implementation of a Grid Connected Battery-Inverter Fleet Model

Rosewater, David M.; Gonzalez, Sigifredo G.

Batteries are designed to store electrical energy. The increasing variation in time value of energy has driven the use of batteries as controllable distributed energy resources (DER). This is enabled though low-cost power electronic inverters that are able to precisely control charge and discharge. This paper describes the software implementation of an open-source battery inverter fleet models in python. The Sandia BatterylnverterFleet class model can be used by scientists, researchers, and engineers to perform simulations of one or more fleets of similar battery-inverter systems connected to the grid. The program tracks the state- of-charge of the simulated batteries and ensures that they stay within their limits while responding to separately generated service requests to charge or discharge. This can be used to analyze control and coordination, placement and sizing, and many other problems associated with the integration of batteries on the power grid. The development of these models along with their python implementation was funded by the Grid Modernization Laboratory Consortium (GMLC) project 1.4.2. Definitions, Standards and Test Procedures for Grid Services from Devices.

More Details

Optimal Field Voltage and Energy Storage Control for Stabilizing Synchronous Generators on Flexible AC Transmission Systems

Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference

Rosewater, David M.; Nguyen, Quan; Santoso, Surya

Power systems can become unstable under transient periods such as short-circuit faults, leading to equipment damage and large scale blackouts. Power system stabilizers (PSS) can be designed to improve the stability of generators by quickly regulating the exciter field voltage to damp the swings of generator rotor angle and speed. The stability achieved through exciter field voltage control can be further improved with a relatively small, fast responding energy storage system (ESS) connected at the terminals of the generator that enables electrical power damping. PSS are designed and studied using a single-machine infinite-bus (SMIB) model. In this paper, we present a comprehensive optimal-control design for a flexible ac synchronous generator PSS using both exciter field voltage and ESS control including estimation of unmeasurable states. The controller is designed to minimize disturbances in rotor frequency and angle, and thereby improve stability. The design process is based on a linear quadratic regulator of the SMIB model with a test system linearized about different operating frequencies in the range 10 Hz to 60 Hz. The optimal performance of the PSS is demonstrated along with the resulting stability improvement.

More Details

Application of a uniform testing protocol for energy storage systems

IEEE Power and Energy Society General Meeting

Rosewater, David M.; Scott, Paul; Santoso, Surya

Methods for benchmarking and comparison can either limit or accelerate the adoption of emerging energy storage technologies on the grid. This paper assesses the efficacy of the methods in the U.S. DOE Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage to remove barriers to the technology's acceptance. The protocol enables standardized data collection to compare different technologies for energy storage applications fairly. We apply the relevant portions of the protocol to a 1-megawatt lithium-ion battery system to provide a critical assessment of procedures and methods it stipulates. Field experience and data will be invaluable to standards development organizations as they begin to consider these methods for codification.

More Details

Shungnak Energy Configuration Options

Rosewater, David M.; Eddy, John P.

Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

More Details

Development of a frequency regulation duty-cycle for standardized energy storage performance testing

Journal of Energy Storage

Rosewater, David M.; Ferreira, Summer R.

The US DOE Protocol for uniformly measuring and expressing the performance of energy storage systems, first developed in 2012 through inclusive working group activities, provides standardized methodologies for evaluating an energy storage system's ability to supply specific services to electrical grids. This article elaborates on the data and decisions behind the duty-cycle used for frequency regulation in this protocol. Analysis of a year of publicly available frequency regulation control signal data from a utility was considered in developing the representative signal for this use case. This showed that signal standard deviation can be used as a metric for aggressiveness or rigor. From these data, we select representative 2 h long signals that exhibit nearly all of dynamics of actual usage under two distinct regimens, one for average use and the other for highly aggressive use. These results were combined into a 24-h duty-cycle comprised of average and aggressive segments. The benefits and drawbacks of the selected duty-cycle are discussed along with its potential implications to the energy storage industry.

More Details

Analyzing system safety in lithium-ion grid energy storage

Journal of Power Sources

Rosewater, David M.; Williams, Adam D.

As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.

More Details

Test report : Raytheon / KTech RK30 Energy Storage System

Rosewater, David M.

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

More Details

Test Report : GS Battery, EPC power HES RESCU

Rosewater, David M.; Schenkman, Benjamin L.; Borneo, Daniel R.

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

More Details

Test report :

Rosewater, David M.

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

More Details

Test report :

Rosewater, David M.; Schenkman, Benjamin L.; Borneo, Daniel R.

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

More Details

Protocol for uniformly measuring and expressing the performance of energy storage systems

Ferreira, Summer R.; Rosewater, David M.; Schoenwald, David A.

The U.S. Department of Energys Energy Storage Systems (ESS) Program, through the support of Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratories (SNL), facilitated the development of the protocol provided in this report. The focus of the protocol is to provide a uniform way of measuring, quantifying, and reporting the performance of ESSs in various applications; something that does not exist today and, as such, is hampering the consideration and use of this technology in the market. The availability of an application-specific protocol for use in measuring and expressing performance-related metrics of ESSs will allow technology developers, power-grid operators and other end-users to evaluate the performance of energy storage technologies on a uniform and comparable basis. This will help differentiate technologies and products for specific application(s) and provide transparency in how performance is measured. It also will assist utilities and other consumers of ESSs to make more informed decisions as they consider the potential application and use of ESSs, as well as form the basis for documentation that might be required to justify utility investment in such technologies.

More Details
105 Results
105 Results