Publications

Results 1–50 of 154
Skip to search filters

Using In Situ TEM Helium Implantation and Annealing to Study Cavity Nucleation and Growth

JOM

Taylor, Caitlin A.; Sugar, Joshua D.; Robinson, David R.; Bartelt, Norman C.; Sills, Ryan B.; Hattar, Khalid M.

Noble gases are generated within solids in nuclear environments and coalesce to form gas stabilized voids or cavities. Ion implantation has become a prevalent technique for probing how gas accumulation affects microstructural and mechanical properties. Transmission electron microscopy (TEM) allows measurement of cavity density, size, and spatial distributions post-implantation. While post-implantation microstructural information is valuable for determining the physical origins of mechanical property degradation in these materials, dynamic microstructural changes can only be determined by in situ experimentation techniques. We present in situ TEM experiments performed on Pd, a model face-centered cubic metal that reveals real-time cavity evolution dynamics. Observations of cavity nucleation and evolution under extreme environments are discussed.

More Details

Palladium-Coated Platinum Powders with Tunable, Nanostructured Surfaces for Applications in Catalysis

ACS Applied Nano Materials

Gurung, Sita; Robinson, David R.; Cappillino, Patrick J.

Simultaneous control of nanoscale surface morphology and composition remains a challenge in preparing bimetallic catalysts, particularly at the large scale required for industrial application and with high-surface-area substrates. Atomic layer electroless deposition (ALED) is a scalable approach to prepare surface-modified metal powders in which elements more noble than the surface hydrides of the substrate metal are deposited layer-by-layer in a surface-limited fashion. Herein we demonstrate that high-surface-area Pt powder is a viable substrate for controlled deposition of Pd adlayers using this technique, with the potential for large-scale preparation, for use in electrocatalytic and catalytic applications such as fuel cells and functionalization of petrochemical feedstocks. Two different growth mechanisms have been proposed based on bulk and surface Pd atomic fractions obtained from atomic absorption spectroscopy and X-ray photoelectron spectroscopy, respectively. Further, spectral simulations were performed to strengthen the proposed growth mechanisms, favoring conformal growth in initial deposition followed by island formation in subsequent cycles. Observation of multiple pathways suggests a means of controlling adlayer surface morphology of ALED materials, in which an initial cycle of deposition sets the fractional coverage and subsequent cycles tune adlayer thickness.

More Details

Listening to Radiation Damage In Situ: Passive and Active Acoustic Techniques

JOM

Dennett, Cody A.; Choens, R.C.; Taylor, Caitlin A.; Heckman, Nathan H.; Ingraham, Mathew D.; Robinson, David R.; Boyce, Brad B.; Short, Michael P.; Hattar, Khalid M.

Knowing when, why, and how materials evolve, degrade, or fail in radiation environments is pivotal to a wide range of fields from semiconductor processing to advanced nuclear reactor design. A variety of methods, including optical and electron microscopy, mechanical testing, and thermal techniques, have been used in the past to successfully monitor the microstructural and property evolution of materials exposed to extreme radiation environments.Acoustic techniques have also been used in the past for this purpose, although most methodologies have not achieved widespread adoption. However, with an increasing desire to understand microstructure and property evolution in situ, acoustic methods provide a promising pathway to uncover information not accessible to more traditional characterization techniques. This work highlights how two different classes of acoustic techniques may be used to monitor material evolution during in situ ion beam irradiation. The passive listening technique of acoustic emission is demonstrated on two model systems, quartz and palladium, and shown to be a useful tool in identifying the onset of damage events such as microcracking.An active acoustic technique in the form of transient grating spectroscopy is used to indirectly monitor the formation of small defect clusters in copper irradiated with self-ions at high temperature through the evolution of surface acoustic wave speeds.These studies together demonstrate the large potential for using acoustic techniques as in situ diagnostics. Such tools could be used to optimize ion beam processing techniques or identify modes and kinetics of materials degradation in extreme radiation environments.

More Details

Materials and Hydrogen Isotope Science at Sandia's California Laboratory

Zimmerman, Jonathan A.; Balch, Dorian K.; Bartelt, Norman C.; Buchenauer, D.A.; Catarineu, Noelle R.; Cowgill, D.F.; El Gabaly Marquez, Farid E.; Karnesky, Richard A.; Kolasinski, Robert K.; Medlin, Douglas L.; Robinson, David R.; Ronevich, Joseph A.; Sabisch, Julian E.; San Marchi, Christopher W.; Sills, Ryan B.; Smith, Thale R.; Sugar, Joshua D.; Zhou, Xiaowang Z.

Abstract not provided.

A Numerical model of exchange chromatography through 3-D lattice structures

AIChE Journal

Salloum, Maher S.; Robinson, David R.

Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3-D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of 1-D flow paths that resemble more traditional honeycomb monoliths. A reaction front moves through the columns and then elutes. The front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the 1-D array. © 2018 American Institute of Chemical Engineers AIChE J, 64: 1874–1884, 2018.

More Details

Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

ACS Applied Materials and Interfaces

Benson, David M.; Tsang, Chu F.; Sugar, Joshua D.; Jagannathan, Kaushik; Robinson, David R.; El Gabaly Marquez, Farid E.; Cappillino, Patrick J.; Stickney, John L.

Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.

More Details

Compact determination of hydrogen isotopes

Fusion Science and Technology

Robinson, David R.

Scanning calorimetry of a confined, reversible hydrogen sorbent material has been previously proposed as a method to determine compositions of unknown mixtures of diatomic hydrogen isotopologues and helium. Application of this concept could result in greater process knowledge during the handling of these gases. Previously published studies have focused on mixtures that do not include tritium. This paper focuses on modeling to predict the effect of tritium in mixtures of the isotopologues on a calorimetry scan. The model predicts that tritium can be measured with a sensitivity comparable to that observed for hydrogen-deuterium mixtures, and that under some conditions, it may be possible to determine the atomic fractions of all three isotopes in a gas mixture.

More Details

Electroless deposition of palladium on macroscopic 3D-printed polymers with dense microlattice architectures for development of multifunctional composite materials

Journal of the Electrochemical Society

Jones, Christopher G.; Mills, Bernice E.; Nishimoto, Ryan K.; Robinson, David R.

A simple procedure has been developed to create palladium (Pd) films on the surface of several common polymers used in commercial fused deposition modeling (FDM) and stereolithography (SLA) based three-dimensional (3D) printing by an electroless deposition process. The procedure can be performed at room temperature, with equipment less expensive than many 3D printers, and occurs rapidly enough to achieve full coverage of the film within a few minutes. 3D substrates composed of dense logpile or cubic lattices with part sizes in the mm to cm range, and feature sizes as small as 150 μm were designed and printed using commercially available 3D printers. The deposition procedure was successfully adapted to show full coverage in the lattice substrates. The ability to design, print, and metallize highly ordered three-dimensional microscale structures could accelerate development of a range of optimized chemical and mechanical engineering systems.

More Details
Results 1–50 of 154
Results 1–50 of 154