Publications

7 Results
Skip to search filters

The influence of intake flow and coolant temperature on gasoline spray morphology during early-injection DISI engine operation

International Journal of Engine Research

Reuss, David L.; Kim, Namho K.; Sjoberg, Carl M.

Multi-hole gasoline injectors operating at conditions spanning throttled early-intake stroke operation produce spray plumes that either remained separated or merge and collapse due to flash boiling. Flash boiling occurs due to the sudden expansion of gas bubbles in the liquid fuel at high fuel temperature and low ambient pressure. This study records high-speed images of spray-morphology changes due to in-cylinder flow, thereby revealing operating conditions that do and do not affect the self-induced morphology observed in quiescent vessels. Specifically, in a central-injection, four-valve, high-tumble engine, where the thermodynamic state and in-cylinder cross flow are dynamic. Additionally, motivated by cold start and hot restart operation, the fuel pressure, coolant temperature, in-cylinder air pressure, and engine rpm were systematically varied over relevant operating conditions, which bracketed the range from non- to flash-boiling sprays. The results reveal the operating conditions at which the in-cylinder cross flow disrupts the spray morphology as well as the extent of the disruption. At 650 rpm, the spray morphology was similar to that observed in quiescent vessels at nominally equivalent fuel temperature and in-cylinder pressure, indicating that the spray’s self-induced entrainment flow dominated the in-cylinder flow. However, for fuel temperature and ambient pressure near the transition between non- and flash-boiling, the intake cross flow at higher engine speed (1950 rpm) significantly disrupted the spray morphology. The high cross-flow velocity appears to induce plume merging and collapse, whereas none was evident at low rpm (650 rpm). This study led to the postulate that the spray merging and collapse are governed by the rate of atomization near the nozzle exit, presumed to be controlled by either or both aerodynamic atomization and flash-boiling intensity. It would then follow that spray modeling in CFD requires atomization models that blend the effects of both physical processes.

More Details

Fuel film thickness measurements using refractive index matching in a stratified-charge SI engine operated on E30 and alkylate fuels

Experiments in Fluids

Ding, Carl P.; Sjoberg, Carl M.; Vuilleumier, David V.; Reuss, David L.; He, Xu; Böhm, Benjamin

This study shows fuel film measurements in a spark-ignited direct injection engine using refractive index matching (RIM). The RIM technique is applied to measure the fuel impingement of a high research octane number gasoline fuel with 30 vol% ethanol content at two intake pressures and coolant temperatures. Measurements are conducted for an alkylate fuel at one operating case, as well. It is shown that the fuel volume on the piston surface increases for lower intake pressure and lower coolant temperature and that the alkylate fuel shows very little spray impingement. The fuel films can be linked to increased soot emissions. A detailed description of the calibration technique is provided and measurement uncertainties are discussed. The dependency of the RIM signal on refractive index changes is measured. The RIM technique provides quantitative film thickness measurements up to 0.9 µm in this engine. For thicker films, semi-quantitative results of film thickness can be utilized to study the distribution of impinged fuel.

More Details

The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

Combustion and Flame

Zeng, Wei; Sjoberg, Carl M.; Reuss, David L.; Hu, Zongjie

Implementation of spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustion repeatability from cycle to cycle.The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum.This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. In contrast, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel-air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.

More Details
7 Results
7 Results