The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron multiplexed photoionization mass spectrometry experiments (298 K, 4 Torr) and high-level theory (CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction), we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethyl amine (DMA). The experimental data supports the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-VUV photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. Here, the rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ~34,000, which is attributed to submerged barrier (syn) vs. barrierless (anti) mechanisms for energetically downhill reactions.
We present a new experimental methodology for detailed experimental investigations of depolymerization reactions over solid catalysts. This project aims to address a critical need in fundamental research on chemical upcycling of polymers – the lack of rapid, sensitive, isomerselective probing techniques for the detection of reaction intermediates and products. Our method combines a heterogeneous catalysis reactor for the study of multiphase (gas/polymer melt/solid) systems, coupled to a vacuum UV photoionization time-of-flight mass spectrometer. This apparatus draws on our expertise in probing complex gas-phase chemistry and enables highthroughput, detailed chemical speciation measurements of the gas phase above the catalyst, providing valuable information on the heterogeneous catalytic reactions. Using this approach, we investigated the depolymerization of high-density polyethylene (HDPE) over Ir-doped zeolite catalysts. We showed that the product distribution was dominated by low-molecular weight alkenes with terminal C=C double bonds and revealed the presence of many methyl-substituted alkenes and alkanes, suggesting extensive methyl radical chemistry. In addition, we investigated the fundamental reactivity of model oligomer molecules n-butane and isobutane over ZSM-5 zeolites. We demonstrated the first direct detection of methyl radical intermediates, confirming the key role of methyl in zeolite-catalyzed activation of alkanes. Our results show the potential of this experimental method to achieve deep insight into the complex depolymerization reactions and pave the way for detailed mechanistic studies, leading to increased fundamental understanding of key processes in chemical upcycling of polymers.
Samanta, B.R.; Fernando, R.; Rösch, D.; Reisler, H.; Osborn, David L.
Pyruvic acid, a representative alpha-keto carboxylic acid, is one of the few organic molecules destroyed in the troposphere by solar radiation rather than by reactions with free radicals. To date, only its stable final products were identified, often with contribution from secondary chemistry, making it difficult to elucidate photodissociation mechanisms following excitation to the lowest singlet excited-state (S1) and the role of the internal hydrogen bond in the most-stable Tc conformer. Using multiplexed photoionization mass spectrometry we report the first direct experimental evidence,viathe observation of singlet methylhydroxycarbene (MHC) following 351 nm excitation, supporting the decarboxylation mechanism previously proposed. Decarboxylation to MHC + CO2represents 97-100% of product branching at 351 nm. We observe vinyl alcohol and acetaldehyde, which we attribute to isomerization of MHC. We also observe a 3 ± 2% yield of the Norrish Type I photoproducts CH3CO + DOCO, but only fromd1-pyruvic acid. At 4 Torr pressure, we measure a photodissociation quantum yield of 1.0+0−0.4, consistent with IUPAC recommendations. However, our measured product branching fractions disagree with IUPAC. In light of previous calculations, these results support a mechanism in which hydrogen transfer on the S1excited state occurs at least partially by tunneling, in competition with intersystem crossing to the T1state. We present the first evidence of a bimolecular reaction of MHC in the gas phase, where MHC reacts with pyruvic acid to produce a C4H8O2product. This observation implies that some MHC produced from pyruvic acid in Earth's troposphere will be stabilized and participate in chemical reactions with O2and H2O, and should be considered in atmospheric modeling.
Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-̇QOOH) or from reactions of HOȮ with alkenes. Ethyloxirane is one of four alkyl-substituted cyclic ether isomers produced as an intermediate from n-butane oxidation. While rate coefficients for β-̇QOOH → ethyloxirane + ȮH are reported extensively, subsequent reaction mechanisms of the cyclic ether are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe ethyloxirane consumption by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present work provides fundamental insight on reaction mechanisms of ethyloxirane in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred from the detection of products during chlorine atom-initiated oxidation experiments using multiplexed photoionization mass spectrometry conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, calculations of stationary point energies were conducted using the ccCA-PS3 composite method on ̇R + O2 potential energy surfaces for the four ethyloxiranyl radical isomers, which produced barrier heights for 24 reaction pathways. In addition to products from ̇QOOH → cyclic ether + ȮH and ̇R + O2 → conjugate alkene + HOȮ, both of which were significant pathways and are prototypical to alkane oxidation, other species were identified from ring-opening of both ethyloxiranyl and ̇QOOH radicals. The latter occurs when the unpaired electron is localized on the ether group, causing the initial ̇QOOH structure to ring-open and form a resonance-stabilized ketohydroperoxide-type radical. The present work provides the first analysis of ethyloxirane oxidation chemistry, which reveals that consumption pathways are complex and may require an expansion of submechanisms to increase the fidelity of chemical kinetics mechanisms.
Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.
Vansco, Michael F.; Caravan, Rebecca L.; Pandit, Shubhrangshu; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Bhagde, Trisha; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Klippenstein, Stephen J.; Taatjes, Craig A.; Lester, Marsha I.
Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2CO+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.
Samanta, B.R.; Fernando, R.; Rösch, D.; Reisler, H.; Osborn, David L.
Photodissociation of pyruvic acid (PA) was studied in the gas-phase at 193 nm using two complementary techniques. The time-sliced velocity map imaging arrangement was used to determine kinetic energy release distributions of fragments and estimate dissociation timescales. The multiplexed photoionization mass spectrometer setup was used to identify and quantify photoproducts, including isomers and free radicals, by their mass-to-charge ratios, photoionization spectra, and kinetic time profiles. Using these two techniques, it is possible to observe the major dissociation products of PA photodissociation: CO2, CO, H, OH, HCO, CH2CO, CH3CO, and CH3. Acetaldehyde and vinyl alcohol are minor primary photoproducts at 193 nm, but products that are known to arise from their unimolecular dissociation, such as HCO, H2CO, and CH4, are identified and quantified. A multivariate analysis that takes into account the yields of the observed products and assumes a set of feasible primary dissociation reactions provides a reasonable description of the photoinitiated chemistry of PA despite the necessary simplifications caused by the complexity of the dissociation. These experiments offer the first comprehensive description of the dissociation pathways of PA initiated on the S3 excited state. Most of the observed products and yields are rationalized on the basis of three reaction mechanisms: (i) decarboxylation terminating in CO2 + other primary products (∼50%); (ii) Norrish type I dissociation typical of carbonyls (∼30%); and (iii) O - H and C - H bond fission reactions generating the H atom (∼10%). The analysis shows that most of the dissociation reactions create more than two products. This observation is not surprising considering the high excitation energy (∼51 800 cm-1) and fairly low energy required for dissociation of PA. We find that two-body fragmentation processes yielding CO2 are minor, and the expected, unstable primary co-fragment, methylhydroxycarbene, is not observed because it probably undergoes fast secondary dissociation and/or isomerization. Norrish type I dissociation pathways generate OH and only small yields of CH3CO and HOCO, which have low dissociation energies and further decompose via three-body fragmentation processes. Experiments with d1-PA (CH3COCOOD) support the interpretations. The dissociation on S3 is fast, as indicated by the products' recoil angular anisotropy, but the roles of internal conversion and intersystem crossing to lower states are yet to be determined.
Vansco, Michael F.; Caravan, Rebecca L.; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Khan, M.A.; Shallcross, Dudley E.; Taatjes, Craig A.; Lester, Marsha I.
Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.
Antonov, Ivan; Voronova, Krisztina; Chen, Ming W.; Sztáray, Bálint; Hemberger, Patrick; Bodi, Andras; Osborn, David L.; Sheps, Leonid S.
We investigate the gas-phase photochemistry of the enolone tautomer of acetylacetone (pentane-2,4-dione) following S2(ππ∗) → S0 excitation at λ = 266 and 248 nm, using three complementary time-resolved spectroscopic methods. Contrary to earlier reports, which claimed to study one-photon excitation of acetylacetone and found OH and CH3 as the only important gas-phase products, we detect 15 unique primary photoproducts and demonstrate that five of them, including OH and CH3, arise solely by multiphoton excitation. We assign the one-photon products to six photochemical channels and show that the most significant pathway is phototautomerization to the diketone form, which is likely an intermediate in several of the other product channels. Furthermore, we measure the equilibrium constant of the tautomerization of the enolone to diketone on S0 from 320 to 600 K and extract ΔH = 4.1 ± 0.3 kcal·mol-1 and ΔS = 6.8 ± 0.5 cal·mol-1·K-1 using a van't Hoff analysis. We correct the C-OH bond dissociation energy in acetylacetone, previously determined as 90 kcal·mol-1 by theory and experiment, to a new value of 121.7 kcal·mol-1. Our experiments and electronic structure calculations provide evidence that some of the product channels, including phototautomerization, occur on S0, while others likely occur on excited triplet surfaces. Although the large oscillator strength of the S2 → S0 transition results from the (ππ∗) excitation of the C=C - C=O backbone, similar to conjugated polyenes, the participation of triplets in the dissociation pathways of acetylacetone appears to have more in common with ketone photochemistry.
Bourgalais, Jeremy; Caster, Kacee L.; Durif, Olivier; Osborn, David L.; Le Picard, Sebastien D.; Goulay, Fabien
Reactions of the methylidyne (CH) radical with ammonia (NH 3 ), methylamine (CH 3 NH 2 ), dimethylamine ((CH 3 ) 2 NH), and trimethylamine ((CH 3 ) 3 N) have been investigated under multiple collision conditions at 373 K and 4 Torr. The reaction products are detected by using soft photoionization coupled to orthogonal acceleration time-of-flight mass spectrometry at the Advanced Light Source (ALS) synchrotron. Kinetic traces are employed to discriminate between CH reaction products and products from secondary or slower reactions. Branching ratios for isomers produced at a given mass and formed by a single reaction are obtained by fitting the observed photoionization spectra to linear combinations of pure compound spectra. The reaction of the CH radical with ammonia is found to form mainly imine, HN?CH 2 , in line with an addition-elimination mechanism. The singly methyl-substituted imine is detected for the CH reactions with methylamine, dimethylamine, and trimethylamine. Dimethylimine isomers are formed by the reaction of CH with dimethylamine, while trimethylimine is formed by the CH reaction with trimethylamine. Overall, the temporal profiles of the products are not consistent with the formation of aminocarbene products in the reaction flow tube. In the case of the reactions with methylamine and dimethylamine, product formation is assigned to an addition-elimination mechanism similar to that proposed for the CH reaction with ammonia. However, this mechanism cannot explain the products detected by the reaction with trimethylamine. A C - H insertion pathway may become more probable as the number of methyl groups increases.
The reaction of perfluorooctanoic acid with the smallest carbonyl oxide Criegee intermediate, CH 2 OO, has been measured and is very rapid, with a rate coefficient of (4.9 ± 0.8) × 10 -10 cm 3 s -1 , similar to that for reactions of Criegee intermediates with other organic acids. Evidence is shown for the formation of hydroperoxymethyl perfluorooctanoate as a product. With such a large rate coefficient, reaction with Criegee intermediates can be a substantial contributor to atmospheric removal of perfluorocarboxylic acids. However, the atmospheric fates of the ester product largely regenerate the initial acid reactant. Wet deposition regenerates the perfluorocarboxylic acid via condensed-phase hydrolysis. Gas-phase reaction with OH is expected principally to result in formation of the acid anhydride, which also hydrolyzes to regenerate the acid, although a minor channel could lead to destruction of the perfluorinated backbone.
Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces – ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex – which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.
Voronova, Krisztina; Ervin, Kent M.; Torma, Krisztián G.; Hemberger, Patrick; Bodi, Andras; Gerber, Thomas; Osborn, David L.; Sztáray, Bálint
We investigated the simplest alkylperoxy radical, CH3OO, formed by reacting photolytically generated CH3 radicals with O2, using the new combustion reactions followed by photoelectron photoion coincidence (CRF-PEPICO) apparatus at the Swiss Light Source. Modeling the experimental photoion mass-selected threshold photoelectron spectrum using Franck-Condon simulations including transitions to triplet and singlet cationic states yielded the adiabatic ionization energy of 10.265 ± 0.025 eV. Dissociative photoionization of CH3OO generates the CH3+ fragment ion at the appearance energy of 11.164 ± 0.010 eV. Combining these two values with ΔfH0K°(CH3) yields ΔfH0K°(CH3OO) = 22.06 ± 0.97 kJ mol-1, reducing the uncertainty of the previously determined value by a factor of 5. Statistical simulation of the CH3OO breakdown diagram provides a molecular thermometer of the free radical's internal temperature, which we measured to be 330 ± 30 K.
Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-α (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH2I2 in the presence of excess O2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 ± 0.4) × 10-13 cm3 s-1 and k(CH2OO + MACR) = (4.4 ± 1.0) × 10-13 cm3 s-1, where the stated ±2σ uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) < 2 × 10-16 cm3 s-1. For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) < 2 × 10-14 cm3 s-1 is obtained.
Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.
Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; Eskola, Arkke J.; Lee, Edmond P.F.; Blacker, Lucy; Hill, Henry R.; Ashcroft, Matilda; Khan, M.A.; Lloyd-Jones, Guy C.; Evans, Louise; Rotavera, Brandon; Huang, Haifeng; Osborn, David L.; Mok, Daniel K.W.; Dyke, John M.; Shallcross, Dudley E.; Percival, Carl J.; Orr-Ewing, Andrew J.; Taatjes, Craig A.
The Criegee intermediate acetone oxide, (CH3)2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10-11 cm3 s-1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10-10 cm3 s-1 at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N2 from cavity ring-down decay of the ultraviolet absorption of (CH3)2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10-10 to (2.29 ± 0.08) × 10-10 cm3 s-1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10-12 cm3 s-1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH3CHOO with NO2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s-1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)2COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)2COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.
Product formation from the low-temperature oxidation of two isotopologues of the proposed biofuel butanone was studied via multiplexed photoionization mass spectrometry (MPIMS) at 500 and 700 K to elucidate product branching ratios for R and QOOH pathways. Products were identified and branching ratios quantified for a number of species, with the aid of ab initio calculations. Chain-inhibiting C-C β-scission of R and select chain-propagating channels are discussed. Whilst methyl vinyl ketone and HOO, (from chain-inhibiting pathways) were found to be major products, chain propagation pathways leading to carbonyl and cyclic ether species following OH-elimination from QOOH were found to be pertinent at both temperatures. At 700 K, R C-C β-scission was significantly enhanced, as evident in the branching ratios, however the formation of QOOH-derived chain-propagation products remained relevant.
Lignocellulosic-derived biofuels represent an important part of sustainable transportation en- ergy and often contain oxygenated functional groups due to the mono- and polysaccharide content in cellulose and hemicellulose. The yields of conjugate alkene + HO2 formation in low-temperature tetrahydropyran oxidation were studied and the influence of oxygen heteroatoms in cyclic hydrocarbons on the associated chain-termination pathways stemming from R + O2 were examined. Relative to the initial radical concentration the trend in conjugate alkene branching fraction showed monotonic positive temperature dependence in both cyclohexane and tetrahydropyran except for tetrahydropyran at 10 torr where increasing the temperature to 700 K caused a decrease. Conjugate alkene branching fractions measured at 1520 torr for cyclohexane and tetrahydropyran followed monotonic positive temperature dependence. In contrast to the results at higher temperature where ring-opening of tetrahydropyranyl radicals interrupted R + O2chemistry and reduces the formation of conjugate alkenes branching fractions measured below 700 K were higher in tetrahydropyran compared to cyclohexane at 10 torr.
The rapid reaction of the smallest Criegee intermediate, CH2OO, with water dimers is the dominant removal mechanism for CH2OO in the Earth's atmosphere, but its products are not well understood. This reaction was recently suggested as a significant source of the most abundant tropospheric organic acid, formic acid (HCOOH), which is consistently underpredicted by atmospheric models. However, using time-resolved measurements of reaction kinetics by UV absorption and product analysis by photoionization mass spectrometry, we show that the primary products of this reaction are formaldehyde and hydroxymethyl hydroperoxide (HMHP), with direct HCOOH yields of less than 10%. Incorporating our results into a global chemistry-transport model further reduces HCOOH levels by 10-90%, relative to previous modeling assumptions, which indicates that the reaction CH2OO + water dimer by itself cannot resolve the discrepancy between the measured and predicted HCOOH levels.
Bourgalais, J.; Spencer, Michael; Osborn, David L.; Goulay, F.; Le Picard, S.D.
Product detection studies of C(3P) atom reactions with butene (C4H8) isomers (but-1-ene, cis-but-2-ene, trans-but-2-ene) are carried out in a flow tube reactor at 353 K and 4 Torr under multiple collision conditions. Ground state carbon atoms are generated by 248 nm laser photolysis of tetrabromomethane, CBr4, in a buffer of helium. Thermalized reaction products are detected using synchrotron tunable VUV photoionization and time-of-flight mass spectrometry. The temporal profiles of the detected ions are used to discriminate products from side or secondary reactions. For the C(3P) + trans-but-2-ene and C(3P) + cis-but-2-ene reactions, various isomers of C4H5 and C5H7 are identified as reaction products formed via CH3 and H elimination. Assuming equal ionization cross sections for all C4H5 and C5H7 isomers, C4H5:C5H7 branching ratios of 0.63:1 and 0.60:1 are derived for the C(3P) + trans-but-2-ene and the C(3P) + cis-but-2-ene reactions, respectively. For the C(3P) + but-1-ene reaction, two reaction channels are observed: the H-elimination channel, leading to the formation of the ethylpropargyl isomer, and the C3H3 + C2H5 channel. Assuming equal ionization cross sections for ethylpropargyl and C3H3 radicals, a branching ratio of 1:0.95 for the C3H3 + C2H5 and H + ethylpropargyl channels is derived. The experimental results are compared to previous H atom branching ratios and used to propose the most likely mechanisms for the reaction of ground state carbon atoms with butene isomers. (Chemical Equation Presented).
The pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)2CO], 2,2,4,4-d4-DEK [d4-DEK; (CH3CD2)2CO], and 1,1,1,5,5,5-d6-DEK [d6-DEK; (CD3CH2)2CO] is studied at 8 torr and 1−2 atm and from 400−625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, RP) or secondary (3-pentan-on-2-yl, RS) radicals, which in turn react with O2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OH channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary RS with O2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (RP), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O2 concentrations and higher pressures (1−2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologues indicates the favored pathway produces a γ-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from 450 to 575 K before intensity drops significantly at 625 K. The KHP time profile also shows a peak followed by a gradual depletion for the extent of experiment. Several tertiary products exhibit a slow accumulation in coincidence with the observed KHP decay. These products can be associated with decomposition of KHP by β-scission pathways or via isomerization of a γ-KHP into a cyclic peroxide intermediate (Korcek mechanism). The oxidation of d4-DEK, where kinetic isotope effects disfavor γ-KHP formation, shows greatly reduced KHP formation and associated signatures from KHP decomposition products.
Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ∼103 has largely precluded its use for this purpose, where a dynamic range of at least 105 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniform intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2-3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar9+, whereas Ar4+ is the largest observable cluster under traditional operation. This advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.
We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.
Cl-initiated oxidation reactions of three small-chain methyl esters, methyl propanoate (CH3CH2COOCH3; MP), methyl butanoate (CH3CH2CH2COOCH3; MB), and methyl valerate (CH3CH2CH2CH2COOCH3; MV), are studied at 1 or 8 Torr and 550 and 650 K. Products are monitored as a function of mass, time, and photoionization energy using multiplexed photoionization mass spectrometry coupled to tunable synchrotron photoionization radiation. Pulsed photolysis of molecular chlorine is the source of Cl radicals, which remove an H atom from the ester, forming a free radical. In each case, after addition of O2 to the initial radicals, chain-terminating HO2-elimination reactions are observed to be important. Branching ratios among competing HO2-elimination channels are determined via absolute photoionization spectra of the unsaturated methyl ester coproducts. At 550 K, HO2-elimination is observed to be selective, resulting in nearly exclusive production of the conjugated methyl ester coproducts, methyl propenoate, methyl-2-butenoate, and methyl-2-pentenoate, respectively. However, in MV, upon raising the temperature to 650 K, other HO2-elimination pathways are observed that yield methyl-3-pentenoate and methyl-4-pentenoate. In each methyl ester oxidation reaction, a peak is observed at a mass consistent with cyclic ether formation, indicating chain-propagating OH loss/ring formation pathways via QOOH intermediates. Evidence is observed for the participation of resonance-stabilized QOOH in the most prominent cyclic ether pathways. Stationary point energies for HO2-elimination pathways and select cyclic ether formation channels are calculated at the CBS-QB3 level of theory and assist in the assignment of reaction pathways and final products.
Prendergast, Matthew B.; Kirk, Benjamin B.; Savee, John D.; Osborn, David L.; Taatjes, Craig A.; Masters, Kye S.; Blanksby, Stephen J.; Da Silva, Gabriel; Trevitt, Adam J.
Gas-phase product detection studies of o-hydroxyphenyl radical and O2 are reported at 373, 500, and 600 K, at 4 Torr (533.3 Pa), using VUV time-resolved synchrotron photoionisation mass spectrometry. The dominant products are assigned as o-benzoquinone (C6H4O2, m/z 108) and cyclopentadienone (C5H4O, m/z 80). It is concluded that cyclopentadienone forms as a secondary product from prompt decomposition of o-benzoquinone (and dissociative ionization of o-benzoquinone may contribute to the m/z 80 signal at photon energies ≳9.8 eV). Ion-trap reactions of the distonic o-hydroxyphenyl analogue, the 5-ammonium-2-hydroxyphenyl radical cation, with O2 are also reported and concur with the assignment of o-benzoquinone as the dominant product. The ion-trap study also provides support for a mechanism where cyclopentadienone is produced by decarbonylation of o-benzoquinone. Kinetic studies compare oxidation of the ammonium-tagged o-hydroxyphenyl and o-methylphenyl radical cations along with trimethylammonium-tagged analogues. Reaction efficiencies are found to be ca. 5% for both charge-tagged o-hydroxyphenyl and o-methylphenyl radicals irrespective of the charged substituent. G3X-K quantum chemical calculations are deployed to rationalise experimental results for o-hydroxyphenyl + O2 and its charge-tagged counterpart. The prevailing reaction mechanism, after O2 addition, involves a facile 1,5-H shift in the peroxyl radical and subsequent elimination of OH to yield o-benzoquinone that is reminiscent of the Waddington mechanism for β-hydroxyperoxyl radicals. These results suggest o-hydroxyphenyl + O2 and decarbonylation of o-benzoquinone serve as plausible OH and CO sources in combustion.
Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; Osborn, David L.; Stanton, John F.; Krylov, Anna I.
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.
Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. This work demonstrates a pathway for PAH formation that does not proceed through benzene.
The reaction of small hydrocarbon radicals (i.e. CN, C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CCC), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.
The reaction of O(3P) + propyne (C3H4) was investigated at 298 K and 4 Torr using time-resolved multiplexed photoionization mass spectrometry and a synchrotron-generated tunable vacuum ultraviolet light source. The time-resolved mass spectra of the observed products suggest five major channels under our conditions: C2H3 + HCO, CH3 + HCCO, H + CH3CCO, C2H4 + CO, and C2H2 + H2 + CO. The relative branching ratios for these channels were found to be 1.00, (0.35 ± 0.11), (0.18 ± 0.10), (0.73 ± 0.27), and (1.31 ± 0.62). In addition, we observed signals consistent with minor production of C3H3 + OH and H2 + CH2CCO, although we cannot conclusively assign them as direct product channels from O(3P) + propyne. The direct abstraction mechanism plays only a minor role (≤1%), and we estimate that O(3P) addition to the central carbon of propyne accounts for 10% of products, with addition to the terminal carbon accounting for the remaining 89%. The isotopologues observed in experiments using d1-propyne (CH3CCD) and analysis of product branching in light of previously computed stationary points on the singlet and triplet potential energy surfaces (PESs) relevant to O(3P) + propyne suggest that, under our conditions, (84 ± 14)% of the observed product channels from O(3P) + propyne result from intersystem crossing from the initial triplet PES to the lower-lying singlet PES.
Low-temperature propane oxidation was studied at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ∼1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O2 reactions by direct HO2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C3H6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.