Publications

Results 1–25 of 140
Skip to search filters

Dramatic Conformer-Dependent Reactivity of the Acetaldehyde Oxide Criegee Intermediate with Dimethylamine Via a 1,2-Insertion Mechanism

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Ramasesha, Krupa R.; Osborn, David L.; Taatjes, Craig A.

The reactivity of carbonyl oxides has previously been shown to exhibit strong conformer and substituent dependencies. Through a combination of synchrotron multiplexed photoionization mass spectrometry experiments (298 K, 4 Torr) and high-level theory (CCSD(T)-F12/cc-pVTZ-F12//B2PLYP-D3/cc-pVTZ with an added CCSDT(Q) correction), we explore the conformer dependence of the reaction of acetaldehyde oxide (CH3CHOO) with dimethyl amine (DMA). The experimental data supports the theoretically predicted 1,2-insertion mechanism and the formation of an amine-functionalized hydroperoxide reaction product. Tunable-VUV photoionization probing of anti- or anti- + syn-CH3CHOO reveals a strong conformer dependence of the title reaction. Here, the rate coefficient of DMA with anti-CH3CHOO is predicted to exceed that for the reaction with syn-CH3CHOO by a factor of ~34,000, which is attributed to submerged barrier (syn) vs. barrierless (anti) mechanisms for energetically downhill reactions.

More Details

A New Approach to Fundamental Mechanism Discovery in Polymer Upcycling

Sheps, Leonid S.; Osborn, David L.; Hansen, Nils H.

We present a new experimental methodology for detailed experimental investigations of depolymerization reactions over solid catalysts. This project aims to address a critical need in fundamental research on chemical upcycling of polymers – the lack of rapid, sensitive, isomerselective probing techniques for the detection of reaction intermediates and products. Our method combines a heterogeneous catalysis reactor for the study of multiphase (gas/polymer melt/solid) systems, coupled to a vacuum UV photoionization time-of-flight mass spectrometer. This apparatus draws on our expertise in probing complex gas-phase chemistry and enables highthroughput, detailed chemical speciation measurements of the gas phase above the catalyst, providing valuable information on the heterogeneous catalytic reactions. Using this approach, we investigated the depolymerization of high-density polyethylene (HDPE) over Ir-doped zeolite catalysts. We showed that the product distribution was dominated by low-molecular weight alkenes with terminal C=C double bonds and revealed the presence of many methyl-substituted alkenes and alkanes, suggesting extensive methyl radical chemistry. In addition, we investigated the fundamental reactivity of model oligomer molecules n-butane and isobutane over ZSM-5 zeolites. We demonstrated the first direct detection of methyl radical intermediates, confirming the key role of methyl in zeolite-catalyzed activation of alkanes. Our results show the potential of this experimental method to achieve deep insight into the complex depolymerization reactions and pave the way for detailed mechanistic studies, leading to increased fundamental understanding of key processes in chemical upcycling of polymers.

More Details

Primary photodissociation mechanisms of pyruvic acid on S1: observation of methylhydroxycarbene and its chemical reaction in the gas phase

Physical Chemistry Chemical Physics

Samanta, B.R.; Fernando, R.; Rösch, D.; Reisler, H.; Osborn, David L.

Pyruvic acid, a representative alpha-keto carboxylic acid, is one of the few organic molecules destroyed in the troposphere by solar radiation rather than by reactions with free radicals. To date, only its stable final products were identified, often with contribution from secondary chemistry, making it difficult to elucidate photodissociation mechanisms following excitation to the lowest singlet excited-state (S1) and the role of the internal hydrogen bond in the most-stable Tc conformer. Using multiplexed photoionization mass spectrometry we report the first direct experimental evidence,viathe observation of singlet methylhydroxycarbene (MHC) following 351 nm excitation, supporting the decarboxylation mechanism previously proposed. Decarboxylation to MHC + CO2represents 97-100% of product branching at 351 nm. We observe vinyl alcohol and acetaldehyde, which we attribute to isomerization of MHC. We also observe a 3 ± 2% yield of the Norrish Type I photoproducts CH3CO + DOCO, but only fromd1-pyruvic acid. At 4 Torr pressure, we measure a photodissociation quantum yield of 1.0+0−0.4, consistent with IUPAC recommendations. However, our measured product branching fractions disagree with IUPAC. In light of previous calculations, these results support a mechanism in which hydrogen transfer on the S1excited state occurs at least partially by tunneling, in competition with intersystem crossing to the T1state. We present the first evidence of a bimolecular reaction of MHC in the gas phase, where MHC reacts with pyruvic acid to produce a C4H8O2product. This observation implies that some MHC produced from pyruvic acid in Earth's troposphere will be stabilized and participate in chemical reactions with O2and H2O, and should be considered in atmospheric modeling.

More Details

Reaction mechanisms of a cyclic ether intermediate: Ethyloxirane

International Journal of Chemical Kinetics

Christianson, Matthew G.; Doner, Anna C.; Davis, Matthew M.; Koritzke, Alanna L.; Turney, Justin M.; Schaefer, Henry F.; Sheps, Leonid S.; Osborn, David L.; Taatjes, Craig A.; Rotavera, Brandon

Oxiranes are a class of cyclic ethers formed in abundance during low-temperature combustion of hydrocarbons and biofuels, either via chain-propagating steps that occur from unimolecular decomposition of β-hydroperoxyalkyl radicals (β-̇QOOH) or from reactions of HOȮ with alkenes. Ethyloxirane is one of four alkyl-substituted cyclic ether isomers produced as an intermediate from n-butane oxidation. While rate coefficients for β-̇QOOH → ethyloxirane + ȮH are reported extensively, subsequent reaction mechanisms of the cyclic ether are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe ethyloxirane consumption by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present work provides fundamental insight on reaction mechanisms of ethyloxirane in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred from the detection of products during chlorine atom-initiated oxidation experiments using multiplexed photoionization mass spectrometry conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, calculations of stationary point energies were conducted using the ccCA-PS3 composite method on ̇R + O2 potential energy surfaces for the four ethyloxiranyl radical isomers, which produced barrier heights for 24 reaction pathways. In addition to products from ̇QOOH → cyclic ether + ȮH and ̇R + O2 → conjugate alkene + HOȮ, both of which were significant pathways and are prototypical to alkane oxidation, other species were identified from ring-opening of both ethyloxiranyl and ̇QOOH radicals. The latter occurs when the unpaired electron is localized on the ether group, causing the initial ̇QOOH structure to ring-open and form a resonance-stabilized ketohydroperoxide-type radical. The present work provides the first analysis of ethyloxirane oxidation chemistry, which reveals that consumption pathways are complex and may require an expansion of submechanisms to increase the fidelity of chemical kinetics mechanisms.

More Details

Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol

ACS Catalysis

Zhou, Bo; Huang, Erxiong H.; Almeida, Raybel A.; Gurses, Sadi; Ungar, Alexander; Zetterberg, Johan; Kulkarni, Ambarish; Kronawitter, Coleman X.; Osborn, David L.; Hansen, Nils H.; Frank, Jonathan H.

Fundamental chemistry in heterogeneous catalysis is increasingly explored using operando techniques in order to address the pressure gap between ultrahigh vacuum studies and practical operating pressures. Because most operando experiments focus on the surface and surface-bound species, there is a knowledge gap of the near-surface gas phase and the fundamental information the properties of this region convey about catalytic mechanisms. We demonstrate in situ visualization and measurement of gas-phase species and temperature distributions in operando catalysis experiments using complementary near-surface optical and mass spectrometry techniques. The partial oxidation of methanol over a silver catalyst demonstrates the value of these diagnostic techniques at 600 Torr (800 mbar) pressure and temperatures from 150 to 410 °C. Planar laser-induced fluorescence provides two-dimensional images of the formaldehyde product distribution that show the development of the boundary layer above the catalyst under different flow conditions. Raman scattering imaging provides measurements of a wide range of major species, such as methanol, oxygen, nitrogen, formaldehyde, and water vapor. Near-surface molecular beam mass spectrometry enables simultaneous detection of all species using a gas sampling probe. Detection of gas-phase free radicals, such as CH3 and CH3O, and of minor products, such as acetaldehyde, dimethyl ether, and methyl formate, provides insights into catalytic mechanisms of the partial oxidation of methanol. The combination of these techniques provides a detailed picture of the coupling between the gas phase and surface in heterogeneous catalysis and enables parametric studies under different operating conditions, which will enhance our ability to constrain microkinetic models of heterogeneous catalysis.

More Details

Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: Experiment and theory

Physical Chemistry Chemical Physics

Vansco, Michael F.; Caravan, Rebecca L.; Pandit, Shubhrangshu; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Bhagde, Trisha; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Klippenstein, Stephen J.; Taatjes, Craig A.; Lester, Marsha I.

Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth's atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2CO+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. syn-MVK-oxide undergoes intramolecular 1,4 H-atom transfer to form a substituted vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxylic radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.

More Details

Looking at the bigger picture: Identifying the photoproducts of pyruvic acid at 193 nm

Journal of Chemical Physics

Samanta, B.R.; Fernando, R.; Rösch, D.; Reisler, H.; Osborn, David L.

Photodissociation of pyruvic acid (PA) was studied in the gas-phase at 193 nm using two complementary techniques. The time-sliced velocity map imaging arrangement was used to determine kinetic energy release distributions of fragments and estimate dissociation timescales. The multiplexed photoionization mass spectrometer setup was used to identify and quantify photoproducts, including isomers and free radicals, by their mass-to-charge ratios, photoionization spectra, and kinetic time profiles. Using these two techniques, it is possible to observe the major dissociation products of PA photodissociation: CO2, CO, H, OH, HCO, CH2CO, CH3CO, and CH3. Acetaldehyde and vinyl alcohol are minor primary photoproducts at 193 nm, but products that are known to arise from their unimolecular dissociation, such as HCO, H2CO, and CH4, are identified and quantified. A multivariate analysis that takes into account the yields of the observed products and assumes a set of feasible primary dissociation reactions provides a reasonable description of the photoinitiated chemistry of PA despite the necessary simplifications caused by the complexity of the dissociation. These experiments offer the first comprehensive description of the dissociation pathways of PA initiated on the S3 excited state. Most of the observed products and yields are rationalized on the basis of three reaction mechanisms: (i) decarboxylation terminating in CO2 + other primary products (∼50%); (ii) Norrish type I dissociation typical of carbonyls (∼30%); and (iii) O - H and C - H bond fission reactions generating the H atom (∼10%). The analysis shows that most of the dissociation reactions create more than two products. This observation is not surprising considering the high excitation energy (∼51 800 cm-1) and fairly low energy required for dissociation of PA. We find that two-body fragmentation processes yielding CO2 are minor, and the expected, unstable primary co-fragment, methylhydroxycarbene, is not observed because it probably undergoes fast secondary dissociation and/or isomerization. Norrish type I dissociation pathways generate OH and only small yields of CH3CO and HOCO, which have low dissociation energies and further decompose via three-body fragmentation processes. Experiments with d1-PA (CH3COCOOD) support the interpretations. The dissociation on S3 is fast, as indicated by the products' recoil angular anisotropy, but the roles of internal conversion and intersystem crossing to lower states are yet to be determined.

More Details

Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates

Journal of Physical Chemistry A

Vansco, Michael F.; Caravan, Rebecca L.; Zuraski, Kristen; Winiberg, Frank A.F.; Au, Kendrew; Trongsiriwat, Nisalak; Walsh, Patrick J.; Osborn, David L.; Percival, Carl J.; Khan, M.A.; Shallcross, Dudley E.; Taatjes, Craig A.; Lester, Marsha I.

Ozonolysis of isoprene, one of the most abundant volatile organic compounds emitted into the Earth's atmosphere, generates two four-carbon unsaturated Criegee intermediates, methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide). The extended conjugation between the vinyl substituent and carbonyl oxide groups of these Criegee intermediates facilitates rapid electrocyclic ring closures that form five-membered cyclic peroxides, known as dioxoles. This study reports the first experimental evidence of this novel decay pathway, which is predicted to be the dominant atmospheric sink for specific conformational forms of MVK-oxide (anti) and MACR-oxide (syn) with the vinyl substituent adjacent to the terminal O atom. The resulting dioxoles are predicted to undergo rapid unimolecular decay to oxygenated hydrocarbon radical products, including acetyl, vinoxy, formyl, and 2-methylvinoxy radicals. In the presence of O2, these radicals rapidly react to form peroxy radicals (ROO), which quickly decay via carbon-centered radical intermediates (QOOH) to stable carbonyl products that were identified in this work. The carbonyl products were detected under thermal conditions (298 K, 10 Torr He) using multiplexed photoionization mass spectrometry (MPIMS). The main products (and associated relative abundances) originating from unimolecular decay of anti-MVK-oxide and subsequent reaction with O2 are formaldehyde (88 ± 5%), ketene (9 ± 1%), and glyoxal (3 ± 1%). Those identified from the unimolecular decay of syn-MACR-oxide and subsequent reaction with O2 are acetaldehyde (37 ± 7%), vinyl alcohol (9 ± 1%), methylketene (2 ± 1%), and acrolein (52 ± 5%). In addition to the stable carbonyl products, the secondary peroxy chemistry also generates OH or HO2 radical coproducts.

More Details

To Boldly Look Where No One Has Looked Before: Identifying the Primary Photoproducts of Acetylacetone

Journal of Physical Chemistry A

Antonov, Ivan; Voronova, Krisztina; Chen, Ming W.; Sztáray, Bálint; Hemberger, Patrick; Bodi, Andras; Osborn, David L.; Sheps, Leonid S.

We investigate the gas-phase photochemistry of the enolone tautomer of acetylacetone (pentane-2,4-dione) following S2(ππ∗) → S0 excitation at λ = 266 and 248 nm, using three complementary time-resolved spectroscopic methods. Contrary to earlier reports, which claimed to study one-photon excitation of acetylacetone and found OH and CH3 as the only important gas-phase products, we detect 15 unique primary photoproducts and demonstrate that five of them, including OH and CH3, arise solely by multiphoton excitation. We assign the one-photon products to six photochemical channels and show that the most significant pathway is phototautomerization to the diketone form, which is likely an intermediate in several of the other product channels. Furthermore, we measure the equilibrium constant of the tautomerization of the enolone to diketone on S0 from 320 to 600 K and extract ΔH = 4.1 ± 0.3 kcal·mol-1 and ΔS = 6.8 ± 0.5 cal·mol-1·K-1 using a van't Hoff analysis. We correct the C-OH bond dissociation energy in acetylacetone, previously determined as 90 kcal·mol-1 by theory and experiment, to a new value of 121.7 kcal·mol-1. Our experiments and electronic structure calculations provide evidence that some of the product channels, including phototautomerization, occur on S0, while others likely occur on excited triplet surfaces. Although the large oscillator strength of the S2 → S0 transition results from the (ππ∗) excitation of the C=C - C=O backbone, similar to conjugated polyenes, the participation of triplets in the dissociation pathways of acetylacetone appears to have more in common with ketone photochemistry.

More Details

Product Detection of the CH Radical Reactions with Ammonia and Methyl-Substituted Amines

Journal of Physical Chemistry A

Bourgalais, Jeremy; Caster, Kacee L.; Durif, Olivier; Osborn, David L.; Le Picard, Sebastien D.; Goulay, Fabien

Reactions of the methylidyne (CH) radical with ammonia (NH 3 ), methylamine (CH 3 NH 2 ), dimethylamine ((CH 3 ) 2 NH), and trimethylamine ((CH 3 ) 3 N) have been investigated under multiple collision conditions at 373 K and 4 Torr. The reaction products are detected by using soft photoionization coupled to orthogonal acceleration time-of-flight mass spectrometry at the Advanced Light Source (ALS) synchrotron. Kinetic traces are employed to discriminate between CH reaction products and products from secondary or slower reactions. Branching ratios for isomers produced at a given mass and formed by a single reaction are obtained by fitting the observed photoionization spectra to linear combinations of pure compound spectra. The reaction of the CH radical with ammonia is found to form mainly imine, HN?CH 2 , in line with an addition-elimination mechanism. The singly methyl-substituted imine is detected for the CH reactions with methylamine, dimethylamine, and trimethylamine. Dimethylimine isomers are formed by the reaction of CH with dimethylamine, while trimethylimine is formed by the CH reaction with trimethylamine. Overall, the temporal profiles of the products are not consistent with the formation of aminocarbene products in the reaction flow tube. In the case of the reactions with methylamine and dimethylamine, product formation is assigned to an addition-elimination mechanism similar to that proposed for the CH reaction with ammonia. However, this mechanism cannot explain the products detected by the reaction with trimethylamine. A C - H insertion pathway may become more probable as the number of methyl groups increases.

More Details

Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids

Environmental Science and Technology

Taatjes, Craig A.; Khan, M.A.; Eskola, Arkke J.; Percival, Carl J.; Osborn, David L.; Wallington, Timothy J.; Shallcross, Dudley E.

The reaction of perfluorooctanoic acid with the smallest carbonyl oxide Criegee intermediate, CH 2 OO, has been measured and is very rapid, with a rate coefficient of (4.9 ± 0.8) × 10 -10 cm 3 s -1 , similar to that for reactions of Criegee intermediates with other organic acids. Evidence is shown for the formation of hydroperoxymethyl perfluorooctanoate as a product. With such a large rate coefficient, reaction with Criegee intermediates can be a substantial contributor to atmospheric removal of perfluorocarboxylic acids. However, the atmospheric fates of the ester product largely regenerate the initial acid reactant. Wet deposition regenerates the perfluorocarboxylic acid via condensed-phase hydrolysis. Gas-phase reaction with OH is expected principally to result in formation of the acid anhydride, which also hydrolyzes to regenerate the acid, although a minor channel could lead to destruction of the perfluorinated backbone.

More Details

The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol

Nature Communications

Caravan, Rebecca L.; Khan, M.A.; Zador, Judit Z.; Sheps, Leonid S.; Antonov, Ivan O.; Rotavera, Brandon; Ramasesha, Krupa R.; Au, Kendrew; Chen, Ming W.; Rösch, Daniel; Osborn, David L.; Fittschen, Christa; Schoemaecker, Coralie; Duncianu, Marius; Grira, Asma; Dusanter, Sebastien; Tomas, Alexandre; Percival, Carl J.; Shallcross, Dudley E.; Taatjes, Craig A.

Methanol is a benchmark for understanding tropospheric oxidation, but is underpredicted by up to 100% in atmospheric models. Recent work has suggested this discrepancy can be reconciled by the rapid reaction of hydroxyl and methylperoxy radicals with a methanol branching fraction of 30%. However, for fractions below 15%, methanol underprediction is exacerbated. Theoretical investigations of this reaction are challenging because of intersystem crossing between singlet and triplet surfaces – ∼45% of reaction products are obtained via intersystem crossing of a pre-product complex – which demands experimental determinations of product branching. Here we report direct measurements of methanol from this reaction. A branching fraction below 15% is established, consequently highlighting a large gap in the understanding of global methanol sources. These results support the recent high-level theoretical work and substantially reduce its uncertainties.

More Details

Radical Thermometers, Thermochemistry, and Photoelectron Spectra: A Photoelectron Photoion Coincidence Spectroscopy Study of the Methyl Peroxy Radical

Journal of Physical Chemistry Letters

Voronova, Krisztina; Ervin, Kent M.; Torma, Krisztián G.; Hemberger, Patrick; Bodi, Andras; Gerber, Thomas; Osborn, David L.; Sztáray, Bálint

We investigated the simplest alkylperoxy radical, CH3OO, formed by reacting photolytically generated CH3 radicals with O2, using the new combustion reactions followed by photoelectron photoion coincidence (CRF-PEPICO) apparatus at the Swiss Light Source. Modeling the experimental photoion mass-selected threshold photoelectron spectrum using Franck-Condon simulations including transitions to triplet and singlet cationic states yielded the adiabatic ionization energy of 10.265 ± 0.025 eV. Dissociative photoionization of CH3OO generates the CH3+ fragment ion at the appearance energy of 11.164 ± 0.010 eV. Combining these two values with ΔfH0K°(CH3) yields ΔfH0K°(CH3OO) = 22.06 ± 0.97 kJ mol-1, reducing the uncertainty of the previously determined value by a factor of 5. Statistical simulation of the CH3OO breakdown diagram provides a molecular thermometer of the free radical's internal temperature, which we measured to be 330 ± 30 K.

More Details

Direct kinetics study of CH2OO + methyl vinyl ketone and CH2OO + methacrolein reactions and an upper limit determination for CH2OO + CO reaction

Physical Chemistry Chemical Physics

Eskola, Arkke J.; Döntgen, Malte; Rotavera, Brandon; Caravan, Rebecca L.; Welz, Oliver; Savee, John D.; Osborn, David L.; Shallcross, Dudley E.; Percival, Carl J.; Taatjes, Craig A.

Methyl vinyl ketone (MVK) and methacrolein (MACR) are important intermediate products in atmospheric degradation of volatile organic compounds, especially of isoprene. This work investigates the reactions of the smallest Criegee intermediate, CH2OO, with its co-products from isoprene ozonolysis, MVK and MACR, using multiplexed photoionization mass spectrometry (MPIMS), with either tunable synchrotron radiation from the Advanced Light Source or Lyman-α (10.2 eV) radiation for photoionization. CH2OO was produced via pulsed laser photolysis of CH2I2 in the presence of excess O2. Time-resolved measurements of reactant disappearance and of product formation were performed to monitor reaction progress; first order rate coefficients were obtained from exponential fits to the CH2OO decays. The bimolecular reaction rate coefficients at 300 K and 4 Torr are k(CH2OO + MVK) = (5.0 ± 0.4) × 10-13 cm3 s-1 and k(CH2OO + MACR) = (4.4 ± 1.0) × 10-13 cm3 s-1, where the stated ±2σ uncertainties are statistical uncertainties. Adduct formation is observed for both reactions and is attributed to the formation of a secondary ozonides (1,2,4-trioxolanes), supported by master equation calculations of the kinetics and the agreement between measured and calculated adiabatic ionization energies. Kinetics measurements were also performed for a possible bimolecular CH2OO + CO reaction and for the reaction of CH2OO with CF3CHCH2 at 300 K and 4 Torr. For CH2OO + CO, no reaction is observed and an upper limit is determined: k(CH2OO + CO) < 2 × 10-16 cm3 s-1. For CH2OO + CF3CHCH2, an upper limit of k(CH2OO + CF3CHCH2) < 2 × 10-14 cm3 s-1 is obtained.

More Details
Results 1–25 of 140
Results 1–25 of 140