Publications

Results 1–50 of 181
Skip to search filters

Credible, Automated Meshing of Images (CAMI)

Roberts, Scott A.; Donohoe, Brendan D.; Martinez, Carianne M.; Krygier, Michael K.; Hernandez-Sanchez, Bernadette A.; Foster, Collin W.; Collins, Lincoln; Greene, Benjamin G.; Noble, David R.; Norris, Chance A.; Potter, Kevin M.; Roberts, Christine C.; Neal, Kyle D.; Bernard, Sylvain R.; Schroeder, Benjamin B.; Trembacki, Bradley L.; LaBonte, Tyler L.; Sharma, Krish S.; Ganter, Tyler G.; Jones, Jessica E.; Smith, Matthew D.

Abstract not provided.

Mesoscale Effects of Composition and Calendering in Lithium-Ion Battery Composite Electrodes

Journal of Electrochemical Energy Conversion and Storage

Trembacki, Bradley T.; Noble, David R.; Ferraro, Mark E.; Roberts, Scott A.

Macrohomogeneous battery models are widely used to predict battery performance, necessarily relying on effective electrode properties, such as specific surface area, tortuosity, and electrical conductivity. While these properties are typically estimated using ideal effective medium theories, in practice they exhibit highly non-ideal behaviors arising from their complex mesostructures. In this paper, we computationally reconstruct electrodes from X-ray computed tomography of 16 nickel-manganese-cobalt-oxide electrodes, manufactured using various material recipes and calendering pressures. Due to imaging limitations, a synthetic conductive binder domain (CBD) consisting of binder and conductive carbon is added to the reconstructions using a binder bridge algorithm. Reconstructed particle surface areas are significantly smaller than standard approximations predicted, as the majority of the particle surface area is covered by CBD, affecting electrochemical reaction availability. Finite element effective property simulations are performed on 320 large electrode subdomains to analyze trends and heterogeneity across the electrodes. Significant anisotropy of up to 27% in tortuosity and 47% in effective conductivity is observed. Electrical conductivity increases up to 7.5× with particle lithiation. We compare the results to traditional Bruggeman approximations and offer improved alternatives for use in cellscale modeling, with Bruggeman exponents ranging from 1.62 to 1.72 rather than the theoretical value of 1.5. We also conclude that the CBD phase alone, rather than the entire solid phase, should be used to estimate effective electronic conductivity. This study provides insight into mesoscale transport phenomena and results in improved effective property approximations founded on realistic, image-based morphologies.

More Details

Electrode Mesoscale as a Collection of Particles: Coupled Electrochemical and Mechanical Analysis of NMC Cathodes

Journal of the Electrochemical Society

Ferraro, Mark E.; Trembacki, Bradley T.; Brunini, Victor B.; Noble, David R.; Roberts, Scott A.

Battery electrodes are composed of polydisperse particles and a porous, composite binder domain. These materials are arranged into a complex mesostructure whose morphology impacts both electrochemical performance and mechanical response. We present image-based, particle-resolved, mesoscale finite element model simulations of coupled electrochemical-mechanical performance on a representative NMC electrode domain. Beyond predicting macroscale quantities such as half-cell voltage and evolving electrical conductivity, studying behaviors on a per-particle and per-surface basis enables performance and material design insights previously unachievable. Voltage losses are primarily attributable to a complex interplay between interfacial charge transfer kinetics, lithium diffusion, and, locally, electrical conductivity. Mesoscale heterogeneities arise from particle polydispersity and lead to material underutilization at high current densities. Particle-particle contacts, however, reduce heterogeneities by enabling lithium diffusion between connected particle groups. While the porous composite binder domain (CBD) may have slower ionic transport and less available area for electrochemical reactions, its high electrical conductivity makes it the preferred reaction site late in electrode discharge. Mesoscale results are favorably compared to both experimental data and macrohomogeneous models. This work enables improvements in materials design by providing a tool for optimization of particle sizes, CBD morphology, and manufacturing conditions.

More Details

A verified conformal decomposition finite element method for implicit, many-material geometries

Journal of Computational Physics

Roberts, Scott A.; Mendoza, Hector M.; Brunini, Victor B.; Noble, David R.

As computing power rapidly increases, quickly creating a representative and accurate discretization of complex geometries arises as a major hurdle towards achieving a next generation simulation capability. Component definitions may be in the form of solid (CAD) models or derived from 3D computed tomography (CT) data, and creating a surface-conformal discretization may be required to resolve complex interfacial physics. The Conformal Decomposition Finite Element Methods (CDFEM) has been shown to be an efficient algorithm for creating conformal tetrahedral discretizations of these implicit geometries without manual mesh generation. In this work we describe an extension to CDFEM to accurately resolve the intersections of many materials within a simulation domain. This capability is demonstrated on both an analytical geometry and an image-based CT mesostructure representation consisting of hundreds of individual particles. Effective geometric and transport properties are the calculated quantities of interest. Solution verification is performed, showing CDFEM to be optimally convergent in nearly all cases. Representative volume element (RVE) size is also explored and per-sample variability quantified. Relatively large domains and small elements are required to reduce uncertainty, with recommended meshes of nearly 10 million elements still containing upwards of 30% uncertainty in certain effective properties. This work instills confidence in the applicability of CDFEM to provide insight into the behaviors of complex composite materials and provides recommendations on domain and mesh requirements.

More Details

Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes

Journal of the Electrochemical Society

Trembacki, Bradley T.; Mistry, Aashutosh N.; Noble, David R.; Ferraro, Mark E.; Mukherjee, Partha P.; Roberts, Scott A.

Typical lithium-ion battery electrodes are porous composites comprised of active material, conductive additives, and polymeric binder, with liquid electrolyte filling the pores. The mesoscale morphology of these constituent phases has a significant impact on both electrochemical reactions and transport across the electrode, which can ultimately limit macroscale battery performance. We reconstruct published X-ray computed tomography (XCT) data from a NMC333 cathode to study mesoscale electrode behavior on an as-manufactured electrode geometry. We present and compare two distinct models that computationally generate a composite binder domain (CBD) phase that represents both the polymeric binder and conductive additives. We compare the effect of the resulting CBD morphologies on electrochemically active area, pore phase tortuosity, and effective electrical conductivity. Both dense and nanoporous CBD are considered, and we observe that acknowledging CBD nanoporosity significantly increases effective electrical conductivity by up to an order of magnitude. Properties are compared to published measurements as well as to approximate values often used in homogenized battery-scale models. All reconstructions exhibit less than 20% of the standard electrochemically active area approximation. Order of magnitude discrepancies are observed between two popular transport simulation numerical schemes (finite element method and finite volume method), highlighting the importance of careful numerical verification.

More Details
Results 1–50 of 181
Results 1–50 of 181