Publications

11 Results
Skip to search filters

Results of external review Sandia microelectronics and microsystems program (September 2004)

Myers, David R.

The US Department of Energy requires a periodic assessment of the Microsystems Program at Sandia National Laboratories. An external review of this program is held approximately every 18 months to 24 months. The report from the External Review Panel serves as the basis for Sandia's ''self assessment'' and is a specific deliverable of the governance contract between Lockheed Martin and the Department of Energy. The External Review of Microelectronics and Microsystems for Fiscal Year 2004 was held September 27-29, 2004 at Sandia National Laboratories, Albuquerque, NM. The external review panel consisted of experts in the fields of microelectronics, photonics and microsystems from universities, industry and other Government agencies. A complete list of the panel members is included as Appendix A of the attached report. The review assessed four areas: relevance to national needs and agency mission; quality of science, technology and engineering; performance in the operation of a major facility; and program performance management and planning. Relevance to national needs and agency mission was rated as ''outstanding''. The quality of science, technology, and engineering was rated as ''outstanding''. Operation of a major facility was rated as ''outstanding'', and the category of program performance, management, and planning was rated as ''outstanding''. Sandia's Microsystems Program thus received an overall rating of ''outstanding'' [the highest possible rating].

More Details

Results of external review Sandia National Laboratories microelectronics and photonics program (October 2002)

Myers, David R.

The US Department of Energy requires a periodic 'self assessment' of Sandia's Microsystems Program. An external panel review of this program is held approximately every 18 months, and the report from the external review panel serves as the basis for the DOE 'self assessment.' The review for this fiscal year was held on September 30-October 1, 2002 at Sandia National Laboratories, Albuquerque, NM. The panel was comprised of experts in the fields of microelectronics, photonics and microsystems from universities, industry and other Government agencies. A complete list of the panel members is shown as Appendix A to the attached report. The review assesses four areas: relevance to national needs and agency mission; quality of science technology and engineering; performance in the operation of a major facility; and program performance management and planning. Relevance to national needs and agency mission was rated as 'outstanding.' The quality of science, technology, and engineering was rated as 'outstanding.' Operation of a major facility was noted as 'outstanding,' while the category of program performance, management, and planning was rated as 'outstanding.' Sandia's Microsystems Program received an overall rating of 'outstanding' [the highest possible rating]. The attached report was prepared by the panel in a format requested by Sandia to conform with the performance criteria for the DOE self assessment.

More Details

The Visionary's Dilemma

Myers, David R.; Sumpter, Carol W.; Jakubczak, Jerome F.

Novel technologies often are born prior to identifying application arenas that can provide the financial support for their development and maturation. After creating new technologies, innovators rush to identify some previously difficult-to-meet product or process challenge. In this regard, microsystems technology is following a path that many other electronic technologies have previously faced. From this perspective, the development of a robust technology follows a three-stage approach. First there is the ''That idea will never work.'' stage, which is hurdled only by proving the concept. Next is the ''Why use such a novel (unproven) technology instead of a conventional one?'' stage. This stage is overcome when a particular important device cannot be made economically--or at all--through the existing technological base. This initial incorporation forces at least limited use of the new technology, which in turn provides the revenues and the user base to mature and sustain the technology. Finally there is the ''Sure that technology (e.g., microsystems) is good for that product (e.g., accelerometers and pressure sensors), but the problems are too severe for any other application'' stage which is only overcome with the across-the-board application of the new technology. With an established user base, champions for the technology become willing to apply the new technology as a potential solution to other problems. This results in the widespread diffusion of the previously shunned technology, making the formerly disruptive technology the new standard. Like many technologies in the microelectronics industry, the microsystems community is now traversing this well-worn path. This paper examines the evolution of microsystems technology from the perspective of Sandia National Laboratories' development of a sacrificial surface micromachining technology and the associated infrastructure.

More Details

Implications of intelligent, integrated microsystems for product design and development

Myers, David R.; McWhorter, Paul J.

Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure. The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology.

More Details

LDRD Final Report - Investigations of the impact of the process integration of deposited magnetic films for magnetic memory technologies on radiation-hardened CMOS devices and circuits - LDRD Project (FY99)

Myers, David R.; Jessing, Jeffrey R.; Spahn, Olga B.; Shaneyfelt, Marty R.

This project represented a coordinated LLNL-SNL collaboration to investigate the feasibility of developing radiation-hardened magnetic non-volatile memories using giant magnetoresistance (GMR) materials. The intent of this limited-duration study was to investigate whether giant magnetoresistance (GMR) materials similar to those used for magnetic tunnel junctions (MTJs) were process compatible with functioning CMOS circuits. Sandia's work on this project demonstrated that deposition of GMR materials did not affect the operation nor the radiation hardness of Sandia's rad-hard CMOS technology, nor did the integration of GMR materials and exposure to ionizing radiation affect the magnetic properties of the GMR films. Thus, following deposition of GMR films on rad-hard integrated circuits, both the circuits and the films survived ionizing radiation levels consistent with DOE mission requirements. Furthermore, Sandia developed techniques to pattern deposited GMR films without degrading the completed integrated circuits upon which they were deposited. The present feasibility study demonstrated all the necessary processing elements to allow fabrication of the non-volatile memory elements onto an existing CMOS chip, and even allow the use of embedded (on-chip) non-volatile memories for system-on-a-chip applications, even in demanding radiation environments. However, funding agencies DTRA, AIM, and DARPA did not have any funds available to support the required follow-on technology development projects that would have been required to develop functioning prototype circuits, nor were such funds available from LDRD nor from other DOE program funds.

More Details
11 Results
11 Results