Publications

123 Results
Skip to search filters

Accelerated Wind-Turbine Wake Recovery Through Actuation of the Tip-Vortex Instability

AIAA Journal

Brown, Kenneth B.; Houck, Daniel; Maniaci, David C.; Westergaard, Carsten H.; Kelley, Christopher L.

Advances in wind-plant control have often focused on more effectively balancing power between neighboring turbines. Wake steering is one such method that provides control-based improvements in a quasi-static way, but this does little to fundamentally change the wake recovery process, and thus, it has limited potential. This study investigates use of another control paradigm known as dynamic wake control (DWC) to excite the mutual inductance instability between adjacent tip-vortex structures, thereby accelerating the breakdown of the structures. The current work carries this approach beyond the hypothetical by applying the excitation via turbine control vectors that already exist on all modern wind turbines: blade pitch and rotor speed control. The investigation leverages a free-vortex wake method (FVWM) that allows a thorough exploration of relevant frequencies and amplitudes of harmonic forcing for each control vector (as well as the phase difference between the vectors for a tandem configuration) while still capturing the essential tip-vortex dynamics. The FVWM output feeds into a Fourier stability analysis working to pinpoint candidate DWC strategies suggesting fastest wake recovery. Near-wake length reductions of >80% are demonstrated, although without considering inflow turbulence. Analysis is provided to interpret these predictions considering the presence of turbulence in a real atmospheric inflow.

More Details

High-fidelity wind farm simulation methodology with experimental validation

Journal of Wind Engineering and Industrial Aerodynamics

Hsieh, Alan H.; Brown, Kenneth B.; deVelder, Nathaniel d.; Herges, Thomas H.; Knaus, Robert C.; Sakievich, Philip S.; Cheung, Lawrence C.; Houchens, Brent C.; Blaylock, Myra L.; Maniaci, David C.

The complexity and associated uncertainties involved with atmospheric-turbine-wake interactions produce challenges for accurate wind farm predictions of generator power and other important quantities of interest (QoIs), even with state-of-the-art high-fidelity atmospheric and turbine models. A comprehensive computational study was undertaken with consideration of simulation methodology, parameter selection, and mesh refinement on atmospheric, turbine, and wake QoIs to identify capability gaps in the validation process. For neutral atmospheric boundary layer conditions, the massively parallel large eddy simulation (LES) code Nalu-Wind was used to produce high-fidelity computations for experimental validation using high-quality meteorological, turbine, and wake measurement data collected at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at Texas Tech University's National Wind Institute. The wake analysis showed the simulated lidar model implemented in Nalu-Wind was successful at capturing wake profile trends observed in the experimental lidar data.

More Details

Rapidly recovering wind turbine wakes with dynamic pitch and rotor speed control

AIAA Scitech 2021 Forum

Brown, Kenneth B.; Houck, Daniel; Maniaci, David C.; Westergaard, Carsten

Advances in wind plant control have often focused on more effectively balancing power between neighboring turbines. Wake steering is one such method that provides control-based improvements in a quasi-static way, but this fundamentally does not change the downstream wake deficit and thus, can only provide limited improvement. Another control paradigm is to leverage the turbine as a flow actuator to dynamically excite unstable modes in the wake, thereby producing accelerated wake breakdown and recovery. Taking a more applied approach than some studies in the wake instability area, this article investigates the use of dynamic wake control (DWC) from two existing turbine control vectors, blade pitch and rotor speed, to incite rapid breakdown of the tip vortex structures. Both control vectors can be dynamically manipulated to make a significant difference on the wake structure and breakdown. The mid-fidelity free-vortex wake method (FVWM) used below allows a thorough search of the parametric space while still capturing the essential physics of the mutual inductance instability. The parameters for investigation include the frequency, amplitude, and phase of the harmonic forcing for both control vectors. The output from the FVWM is the basis for a Fourier stability analysis, which is used to pinpoint and quantify candidate forcing strategies with the highest instability growth rates and shortest near-wake lengths. The strategies, including dynamic rotor speed, blade pitch, and a novel tandem configuration, work to augment the initial tip vortex instability magnitude, leading to near-wake length reductions of greater than 80%, though without considering inflow turbulence. Analysis is provided to interpret these predictions considering the presence of inflow turbulence in a real atmosphere.

More Details

Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance

Journal of Physics: Conference Series

Maniaci, David C.; Westergaard, Carsten H.; Hsieh, Alan H.; Paquette, Joshua P.

Many factors that influence the effect of leading edge erosion on annual energy production are uncertain, such as the time to initiation, damage growth rate, the blade design, operational conditions, and atmospheric conditions. In this work, we explore how the uncertain parameters that drive leading edge erosion impact wind turbine power performance using a combination of uncertainty quantification and wind turbine modelling tools, at both low and medium fidelity. Results will include the predicted effect of erosion on several example wind plant sites for representative ranges of wind turbine designs, with a goal of helping wind plant operators better decide mitigation strategies.

More Details

Representation of coherent structures and turbulence spectra from a virtual SpinnerLidar for future les wake validation

Journal of Physics: Conference Series

Brown, Kenneth; Hsieh, Alan H.; Herges, Thomas H.; Maniaci, David C.

Work has begun towards model validation of wake dynamics for the large-eddy simulation (LES) code Nalu-Wind in the context of research-scale wind turbines in a neutral atmospheric boundary layer (ABL). Interest is particularly directed at the structures and spectra which are influential for wake recovery and downstream turbine loading. This initial work is to determine the feasibility of using nacelle-mounted, continuous-wave lidars to measure and validate wake physics via comparisons of full actuator line simulation results with those obtained from a virtual lidar embedded within the computational domain. Analyses are conducted on the dominant large-scale flow structures via proper orthogonal decomposition (POD) and on the various scales of wake-added turbulence through spectral comparisons. The virtual lidar adequately reproduces spatial structures and energies compared to the full simulation results. Correction of the higher-frequency turbulence spectra for volume-averaging attenuation was most successful at locations where mean gradients were not severe. The results of this work will aid the design of experiments for validation of high-fidelity wake models.

More Details

Quantification of rotor thrust and momentum deficit evolution in the wake using Nalu-Wind simulations

Journal of Physics: Conference Series

Herges, Thomas H.; Kelley, Christopher L.; Hsieh, Alan H.; Brown, Kenneth; Maniaci, David C.; Naughton, Jonathan

Nalu-Wind simulations of the neutral inflow Scaled Wind Farm Technology (SWiFT) benchmark were used to analyze which quantities of interest within the wind turbine wake and surrounding control volume are important in performing a momentum deficit analysis of the wind turbine thrust force. The necessary quantities of interest to conduct a full Reynolds-Averaged Navier-Stokes (RANS) formulation analysis were extracted along the control volume surfaces within the Nalu simulation domain over a 10 minute period. The thrust force calculated within the wake from two to eight diameters downstream using the control volume surfaces and the full RANS approach matched the thrust force that the wind turbine applied to the flowfield. A simplified one-dimension momentum analysis was included to determine if the inflow and wake velocities typically acquired during field campaigns would be sufficient to perform a momentum deficit analysis within a wind turbine wake. The one-dimensional analysis resulted in a 70% difference relative to the coefficient of thrust (Ct ) determined by the full RANS method at 2D downstream and a 40% difference from 5D to 8D, where D is the diameter of the turbine. This suggests that the quantities typically captured during field campaigns are insufficient to perform an accurate momentum deficit analysis unless streamwise pressure distribution is acquired, which reduced the relative difference to less than 10% for this particular atmospheric inflow.

More Details

Wake statistics of different-scalewind turbines under turbulent boundary layer inflow

Energies

Yang, Xiaolei; Foti, Daniel; Kelley, Christopher L.; Maniaci, David C.; Sotiropoulos, Fotis

Subscale wind turbines can be installed in the field for the development of wind technologies, for which the blade aerodynamics can be designed in a way similar to that of a full-scale wind turbine. However, it is not clear whether the wake of a subscale turbine, which is located closer to the ground and faces different incoming turbulence, is also similar to that of a full-scale wind turbine. In this work we investigate the wakes from a full-scale wind turbine of rotor diameter 80 m and a subscale wind turbine of rotor diameter of 27 m using large-eddy simulation with the turbine blades and nacelle modeled using actuator surface models. The blade aerodynamics of the two turbines are the same. In the simulations, the two turbines also face the same turbulent boundary inflows. The computed results show differences between the two turbines for both velocity deficits and turbine-added turbulence kinetic energy. Such differences are further analyzed by examining the mean kinetic energy equation.

More Details

Wind Energy High-Fidelity Model Verification and Validation Roadmap

Maniaci, David C.; Barone, Matthew F.; Arunajatesan, Srinivasan A.; Moriarty, Patrick J.; Churchfield, Matthew J.; Sprague, Michael S.

The development of a next generation high-fidelity modeling code for wind plant applications is one of the central focus areas of the U.S. Department of Energy Atmosphere to Electrons (A2e) initiative. The code is based on a highly scalable framework, currently called Nalu-Wind. One key aspect of the model development is a coordinated formal validation program undertaken specifically to establish the predictive capability of Nalu-Wind for wind plant applications. The purpose of this document is to define the verification and validation (V&V) plan for the A2e high-fidelity modeling capability. It summarizes the V&V framework, identifies code capability users and use cases, describes model validation needs, and presents a timeline to meet those needs.

More Details

Multilevel uncertainty quantification of a wind turbine large eddy simulation model

Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018

Maniaci, David C.; Frankel, Ari L.; Geraci, Gianluca G.; Blaylock, Myra L.; Eldred, Michael S.

Wind energy is stochastic in nature; the prediction of aerodynamic quantities and loads relevant to wind energy applications involves modeling the interaction of a range of physics over many scales for many different cases. These predictions require a range of model fidelity, as predictive models that include the interaction of atmospheric and wind turbine wake physics can take weeks to solve on institutional high performance computing systems. In order to quantify the uncertainty in predictions of wind energy quantities with multiple models, researchers at Sandia National Laboratories have applied Multilevel-Multifidelity methods. A demonstration study was completed using simulations of a NREL 5MW rotor in an atmospheric boundary layer with wake interaction. The flow was simulated with two models of disparate fidelity; an actuator line wind plant large-eddy scale model, Nalu, using several mesh resolutions in combination with a lower fidelity model, OpenFAST. Uncertainties in the flow conditions and actuator forces were propagated through the model using Monte Carlo sampling to estimate the velocity defect in the wake and forces on the rotor. Coarse-mesh simulations were leveraged along with the lower-fidelity flow model to reduce the variance of the estimator, and the resulting Multilevel-Multifidelity strategy demonstrated a substantial improvement in estimator efficiency compared to the standard Monte Carlo method.

More Details

Comparison of field measurements and large eddy simulations of the scaled wind farm technology (SWIFT) site

ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019

Blaylock, Myra L.; Houchens, Brent C.; Maniaci, David C.; Herges, Thomas H.; Hsieh, Alan H.; Knaus, Robert C.; Sakievich, Philip S.

Power production of the turbines at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at the Texas Tech University’s National Wind Institute Research Center was measured experimentally and simulated for neutral atmospheric boundary layer operating conditions. Two V27 wind turbines were aligned in series with the dominant wind direction, and the upwind turbine was yawed to investigate the impact of wake steering on the downwind turbine. Two conditions were investigated, including that of the leading turbine operating alone and both turbines operating in series. The field measurements include meteorological evaluation tower (MET) data and light detection and ranging (lidar) data. Computations were performed by coupling large eddy simulations (LES) in the three-dimensional, transient code Nalu-Wind with engineering actuator line models of the turbines from OpenFAST. The simulations consist of a coarse precursor without the turbines to set up an atmospheric boundary layer inflow followed by a simulation with refinement near the turbines. Good agreement between simulations and field data are shown. These results demonstrate that Nalu-Wind holds the promise for the prediction of wind plant power and loads for a range of yaw conditions.

More Details

Roughness Sensitivity Comparisons of Wind Turbine Blade Sections

Wilcox, Benjamin W.; White, Edward, B.; Maniaci, David C.

One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 106 and 4.0 x 106. Results are compared to previous tests of a NACA 633 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.

More Details

RANS Based Methodology for Predicting the Influence of Leading Edge Erosion on Airfoil Performance

Langel, Christopher M.; Chow, Raymond C.; van Dam, C.P.v.; Maniaci, David C.

The impact of surface roughness on flows over aerodynamically designed surfaces is of interested in a number of different fields. It has long been known the surface roughness will likely accelerate the laminar- turbulent transition process by creating additional disturbances in the boundary layer. However, there are very few tools available to predict the effects surface roughness will have on boundary layer flow. There are numerous implications of the premature appearance of a turbulent boundary layer. Increases in local skin friction, boundary layer thickness, and turbulent mixing can impact global flow properties compounding the effects of surface roughness. With this motivation, an investigation into the effects of surface roughness on boundary layer transition has been conducted. The effort involved both an extensive experimental campaign, and the development of a high fidelity roughness model implemented in a R ANS solver. Vast a mounts of experimental data was generated at the Texas A&M Oran W. Nicks Low Speed Wind Tunnel for the calibration and validation of the roughness model described in this work, as well as future efforts. The present work focuses on the development of the computational model including a description of the calibration process. The primary methodology presented introduces a scalar field variable and associated transport equation that interacts with a correlation based transition model. The additional equation allows for non-local effects of surface roughness to be accounted for downstream of rough wall sections while maintaining a "local" formulation. The scalar field is determined through a boundary condition function that has been calibrated to flat plate cases with sand grain roughness. The model was initially tested on a NACA 0012 airfoil with roughness strips applied to the leading edge. Further calibration of the roughness model was performed using results from the companion experimental study on a NACA 633 -418 airfoil. The refined model demonstrates favorable agreement predicting changes to the transition location, as well as drag, for a number of different leading edge roughness configurations on the NACA 633-418 airfoil. Additional tests were conducted on a thicker S814 airfoil, with similar roughness configurations to the NACA 633-418. Simulations run with the roughness model compare favorably with the results obtained in the experimental study for both airfoils.

More Details

Extended Glauert Tip Correction to Include Vortex Rollup Effects

Journal of Physics: Conference Series

Maniaci, David C.; Schmitz, Sven

Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. It is found that accounting for the effects of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.

More Details

Experimental Measurement and CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion

Journal of Physics: Conference Series

Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; Van Dam, C.P.; Paquette, Joshua P.

Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.

More Details

Extended Glauert tip correction to include vortex rollup effects

Journal of Physics. Conference Series

Maniaci, David C.; Schmitz, Sven S.

Wind turbine loads predictions by blade-element momentum theory using the standard tip-loss correction have been shown to over-predict loading near the blade tip in comparison to experimental data. This over-prediction is theorized to be due to the assumption of light rotor loading, inherent in the standard tip-loss correction model of Glauert. A higher- order free-wake method, WindDVE, is used to compute the rollup process of the trailing vortex sheets downstream of wind turbine blades. Results obtained serve an exact correction function to the Glauert tip correction used in blade-element momentum methods. Lastly, it is found that accounting for the effects of tip vortex rollup within the Glauert tip correction indeed results in improved prediction of blade tip loads computed by blade-element momentum methods.

More Details

Wind Turbine Wakes

Kelley, Christopher L.; Maniaci, David C.; Resor, Brian R.

The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Wind Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.

More Details

V&V framework

Hills, Richard G.; Maniaci, David C.; Naughton, Jonathan W.

A Verification and Validation (V&V) framework is presented for the development and execution of coordinated modeling and experimental program s to assess the predictive capability of computational models of complex systems through focused, well structured, and formal processes.The elements of the framework are based on established V&V methodology developed by various organizations including the Department of Energy, National Aeronautics and Space Administration, the American Institute of Aeronautics and Astronautics, and the American Society of Mechanical Engineers. Four main topics are addressed: 1) Program planning based on expert elicitation of the modeling physics requirements, 2) experimental design for model assessment, 3) uncertainty quantification for experimental observations and computational model simulations, and 4) assessment of the model predictive capability. The audience for this document includes program planners, modelers, experimentalist, V &V specialist, and customers of the modeling results.

More Details

Assessment of Scaled Rotors for Wind Tunnel Experiments

Maniaci, David C.; Kelley, Christopher L.; Chiu, Phillip C.

Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor, the G1, designed and built by researchers at the Technical University of München.

More Details

V&V Framework Part 1 Release

Hills, Richard G.; Maniaci, David C.; Naughton, Jonathan W.

The objective of this document is to accurately predict, assess and optimize wind plant performance utilizing High Performance Modeling (HPC) tools developed in a community-based, open-source simulation environment to understand and accurately predict the fundamental physics and complex flows of the atmospheric boundary layer, interaction with the wind plant, as well as the response of individual turbines to the complex flows within that plant

More Details

Dynamic wake meandering model comparison with varying fidelity models for wind turbine wake prediction

Annual Forum Proceedings - AHS International

Ennis, Brandon L.; Kelley, Christopher L.; Maniaci, David C.

The dynamic wake meandering model (DWM) is a common wake model used for fast prediction of wind farm power and loads. This model is compared to higher fidelity vortex method (VM) and actuator line large eddy simulation (AL-LES) model results. By looking independently at the steady wake deficit model of DWM, and performing a more rigorous comparison than averaged result comparisons alone can produce, the models and their physical processes can be compared. The DWM and VM results of wake deficit agree best in the mid-wake region due to the consistent recovery prior to wake breakdown predicted in the VM results. DWM and AL-LES results agree best in the far-wake due to the low recovery of the laminar flow field AL-LES simulation. The physical process of wake recovery in the DWM model differed from the higher fidelity models and resulted solely from wake expansion downstream, with no momentum recovery up to 10 diameters. Sensitivity to DWM model input boundary conditions and their effects are shown, with greatest sensitivity to the rotor loading and to the turbulence model.

More Details

Effects of increasing tip velocity on wind turbine rotor design

Resor, Brian R.; Maniaci, David C.; Berg, Jonathan C.; Richards, Phillip W.

A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

More Details

Definition of the National Rotor Testbed: An Aeroelastically relevant research-scale wind turbine rotor

32nd ASME Wind Energy Symposium

Resor, Brian R.; Maniaci, David C.

Sandia is designing a set of modern, research-quality blades for use on the V27 turbines at the DOE/SNL SWiFT site at Texas Tech University in Lubbock, Texas. The new blades will replace OEM blades and will be a publicly available resource for subscale rotor research. Features of the new blades do not represent the optimal design for a V27 rotor, but are determined by aeroelastic scaling of relevant parameters and design drivers from a representative megawatt-scale rotor. Scaling parameters and design drivers are chosen based two factors: 1) retrofit to the existing SWiFT turbines and 2) replicate rotor loads and wake formation of a utility scale turbine to support turbine -turbine interaction research at multiple scales. The blades are expected to provide a publicly available baseline blade design which will enable increased participation in future blade research as well as accelerated hardware manufacture and test for demonstration of innovation. This paper discusses aeroelastic scaling approaches, a rotor design process and a summary of design concepts.

More Details
123 Results
123 Results