Publications

14 Results
Skip to search filters

Comparison of photovoltaic module performance measurements

King, David L.; Kratochvil, Jay A.

Computer simulation tools used to predict the energy production of photovoltaic systems are needed in order to make informed economic decisions. These tools require input parameters that characterize module performance under various operational and environmental conditions. Depending upon the complexity of the simulation model, the required input parameters can vary from the limited information found on labels affixed to photovoltaic modules to an extensive set of parameters. The required input parameters are normally obtained indoors using a solar simulator or flash tester, or measured outdoors under natural sunlight. This paper compares measured performance parameters for three photovoltaic modules tested outdoors at the National Institute of Standards and Technology (NIST) and Sandia National Laboratories (SNL). Two of the three modules were custom fabricated using monocrystalline and silicon film cells. The third, a commercially available module, utilized triple-junction amorphous silicon cells. The resulting data allow a comparison to be made between performance parameters measured at two laboratories with differing geographical locations and apparatus. This paper describes the apparatus used to collect the experimental data, test procedures utilized, and resulting performance parameters for each of the three modules. Using a computer simulation model, the impact that differences in measured parameters have on predicted energy production is quantified. Data presented for each module includes power output at standard rating conditions and the influence of incident angle, air mass, and module temperature on each module's electrical performance. Measurements from the two laboratories are in excellent agreement. The power at standard rating conditions is within 1% for all three modules. Although the magnitude of the individual temperature coefficients varied as much as 17% between the two laboratories, the impact on predicted performance at various temperature levels was minimal, less than 2%. The influence of air mass on the performance of the three modules measured at the laboratories was in excellent agreement. The largest difference in measured results between the two laboratories was noted in the response of the modules to incident angles that exceed 75 deg.

More Details

Photovoltaic array performance model

King, David L.; Kratochvil, Jay A.

This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

More Details

Experimental optimization of the FireFly 600 photovoltaic off-grid system

King, David L.; King, David L.; Hund, Thomas D.; Boyson, William E.; Ralph, Mark E.

A comprehensive evaluation and experimental optimization of the FireFly{trademark} 600 off-grid photovoltaic system manufactured by Energia Total, Ltd. was conducted at Sandia National Laboratories in May and June of 2001. This evaluation was conducted at the request of the manufacturer and addressed performance of individual system components, overall system functionality and performance, safety concerns, and compliance with applicable codes and standards. A primary goal of the effort was to identify areas for improvement in performance, reliability, and safety. New system test procedures were developed during the effort.

More Details

Comparison of Module Performance Characterization Methods

King, David L.; Boyson, William E.; Kratochvil, Jay A.; King, David L.

The rating and modeling of photovoltaic PW module performance has been of concern to manufacturers and system designers for over 20 years. Both the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL) have developed methodologies to predict module and array performance under actual operating conditions. This paper compares the two methods of determining the performance of PV modules, The methods translate module performance to actual or reference conditions using slightly different approaches. The accuracy of both methods is compared for both hourly, daily, and annual energy production over a year of data recorded at NREL in Golden, CO. The comparison of the two methods will be presented for five different PV module technologies.

More Details

Twenty years of service at NBNM - Analysis of Spectrolab module

Quintana, Michael A.; King, David L.; Kratochvil, Jay A.; Quintana, Michael A.

This study of adhesional strength and surface analysis of encapsulant and silicon cell samples from a Natural Bridges National Monument (NBNM) Spectrolab module is an attempt to understand from its success. The module was fabricated using polyvinyl butyral (PVB) as an encapsulant. The average adhesional shear strength of the encapsulant at the cell/encapsulant interface in this module was 4.51 MPa or {approximately} 18% lower than that in currently manufactured modules. Typical encapsulant surface composition was as follows: C 75.0 at.% O 23.2 at.%, and Si 1.6 at.%, with Ag {approximately}0.2 at.% and Pb {approximately} 0.5 at.% with some tin respectively over the grid lines and solder bond. Representative silicon cell surface composition was: K 1.4 at.%, C 20.8 at.%, Sn 0.94 at.%, O 15.1 at.%, Na 2.7 at.% and Si 59.0 at.%. The presence of tin detected on the silicon cell surface may be attributed to corrosion of solder bond. The module differs from typical contemporary modules in the use of PVB, metallic mesh type interconnection, and silicon oxide AR coating.

More Details

Module 30 year life: What does it mean and is it predictable-achievable?

King, David L.; Quintana, Michael A.; King, David L.

The authors define what they mean by a 30-year module life and the testing protocol that they believe is involved in achieving such a prediction. However, they do not believe that a universal test (or series of tests) will allow for such a prediction to be made. They can test for a lot of things, but they believe it is impossible to provide a 30-year certification for any PV module submitted for test. They explain their belief in this paper.

More Details
14 Results
14 Results