Publications

2 Results
Skip to search filters

Regional Dynamic Simulation Modeling and Analysis of Integrated Energy Futures

Malczynski, Leonard A.; Beyeler, Walter E.; Conrad, Stephen H.; Harris, David H.; Rexroth, Paul E.; Baker, Arnold B.

The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 12 other measures of environmental impact. It includes historical data from 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2001 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of ''what if'' scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.

More Details

Dynamic Simulation Model of the National Security Consequences from Energy Supply Disruptions

Malczynski, Leonard A.; Paananen, Orman H.; Harris, David H.; Baker, Arnold B.

Recent terrorist attacks in the United States have increased concerns about potential national security consequences from energy supply disruptions. The purpose of this Laboratory Directed Research & Development (LDRD) is to develop a high-level dynamic simulation model that would allow policy makers to explore the national security consequences of major US. energy supply disruptions, and to do so in a way that would integrate energy, economic and environmental components. The model allows exploration of potential combinations of demand-driven energy supplies that meet chosen policy objectives, including: Mitigating economic losses, measured in national economic output and employment levels, due to terrorist activity or forced outages of the type seen in California; Control of greenhouse gas levels and growth rates; and Moderating US. energy import requirements. This work has built upon the Sandia US. Energy and greenhouse Gas Model (USEGM) by integrating a macroeconomic input-output framework into the model, adding the capability to assess the potential economic impact of energy supply disruptions and the associated national security issues. The economic impacts of disruptions are measured in terms of lost US. output (e.g., GDP, sectoral output) and lost employment, and are assessed either at a broad sectoral level (3 sectors) or at a disaggregated level (52 sectors). In this version of the model, physical energy disruptions result in quantitative energy shortfalls, and energy prices are not permitted to rise to clear the markets.

More Details
2 Results
2 Results