Publications

Results 1–25 of 39
Skip to search filters

Methods for kinetic modeling of temporally resolved hyperspectral confocal fluorescence images

Applied Spectroscopy

Cutler, Patrick J.; Haaland, David M.; Andries, Erik; Gemperline, Paul J.

Elucidating kinetic information (rate constants) from temporally resolved hyperspectral confocal fluorescence images offers some very important opportunities for the interpretation of spatially resolved hyperspectral confocal fluorescence images but also presents significant challenges, these being (1) the massive amount of data contained in a series of time-resolved spectral images (one time course of spectral data for each pixel) and (2) unknown concentrations of the reactants and products at time = 0, a necessary precondition normally required by traditional kinetic fitting approaches. This paper describes two methods for solving these problems: direct nonlinear (DNL) estimation of all parameters and separable least squares (SLS). The DNL method can be applied to reactions of any rate law, while the SLS method is restricted to first-order reactions. In SLS, the inherently linear and nonlinear parameters of first-order reactions are solved in separate linear and nonlinear steps, respectively. The new methods are demonstrated using simulated data sets and an experimental data set involving photobleaching of several fluorophores. This work demonstrates that both DNL and SLS hard-modeling methods applied to the kinetic modeling of temporally resolved hyperspectral images can outperform traditional soft-modeling and hard/soft-modeling methods which use multivariate curve resolution-alternating least squares (MCR-ALS) methods. In addition, the SLS method is much faster and is able to analyze much larger data sets than the DNL method. © 2009 Society for Applied Spectroscopy.

More Details

Weighting hyperspectral image data for improved multivariate curve resolution results

Journal of Chemometrics

Jones, Howland D.; Haaland, David M.; Sinclair, Michael B.; Melgaard, David K.; Van Benthem, Mark V.; Pedroso, M.C.

The combination of hyperspectral confocal fluorescence microscopy and multivariate curve resolution (MCR) provides an ideal system for improved quantitative imaging when multiple fluorophores are present. However, the presence of multiple noise sources limits the ability of MCR to accurately extract pure-component spectra when there is high spectral and/or spatial overlap between multiple fluorophores. Previously, MCR results were improved by weighting the spectral images for Poisson-distributed noise, but additional noise sources are often present. We have identified and quantified all the major noise sources in hyperspectral fluorescence images. Two primary noise sources were found: Poisson-distributed noise and detector-read noise. We present methods to quantify detector-read noise variance and to empirically determine the electron multiplying CCD (EMCCD) gain factor required to compute the Poisson noise variance. We have found that properly weighting spectral image data to account for both noise sources improved MCR accuracy. In this paper, we demonstrate three weighting schemes applied to a real hyperspectral corn leaf image and to simulated data based upon this same image. MCR applied to both real and simulated hyperspectral images weighted to compensate for the two major noise sources greatly improved the extracted pure emission spectra and their concentrations relative to MCR with either unweighted or Poisson-only weighted data. Thus, properly identifying and accounting for the major noise sources in hyperspectral images can serve to improve the MCR results. These methods are very general and can be applied to the multivariate analysis of spectral images whenever CCD or EMCCD detectors are used. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope

Journal of Chemometrics

Van Benthem, Mark H.; Keenan, Michael R.; Davis, Ryan W.; Liu, Ping; Jones, Howland D.; Haaland, David M.; Sinclair, Michael B.; Brasier, Allan R.

Hyperspectral imaging confocal microscopy (HSI-CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI-CM is a data rich technique that routinely generates two-way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three-way data with HSI-CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI-CM can be difficult to manage computationally. The 208 x 204 x 512 x 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three-way data are produced and the methods we have used to process them. Specifically, we show that co-adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.

More Details

3D optical sectioning with a new hyperspectral confocal fluorescence imaging system

Haaland, David M.; Sinclair, Michael B.; Jones, Howland D.; Timlin, Jerilyn A.; Bachand, George B.; Sasaki, Darryl Y.; Davidson, George S.; Van Benthem, Mark V.

A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

More Details

Hyperspectral imaging system for quantitative identification and discrimination of fluorescent labels in the presence of autofluorescence

2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings

Nieman, Linda T.; Sinclair, Michael B.; Timlin, Jerilyn A.; Jones, Howland D.; Haaland, David M.

Multivariate data analysis applied to hyperspectral images offers the unique opportunity to dramatically increase the amount of information gained from a single biological sample. Numerous fluorescent tags can be used to perform multiple studies in parallel from a single hyperspectral image scan. Highly spatially and spectrally overlapping fluorophores can be separated even amidst a large autofluorescence background with the use of multivariate curve resolution methods. The results of two biological samples with multiple fluorescent labels are shown and compared to a traditional filter-based multispectral system. These examples illustrate the combined power of the hyperspectral microscope hardware and the multivariate image analysis software for biomedical imaging. This technique has the potential to be applied to a broad array of biological applications where fluorescent tags are a central and ubiquitous tool, and to biomedical areas that focus on the discovery and identification of weak, broad spectrum native fluorescence. © 2006 IEEE.

More Details

Hyperspectral confocal microscope

Applied Optics

Sinclair, Michael B.; Haaland, David M.; Timlin, Jerilyn A.; Jones, Howland D.

We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.

More Details

Imaging multiple endogenous and exogenous fluorescent species in cells and tissues

Progress in Biomedical Optics and Imaging - Proceedings of SPIE

Timlin, Jerilyn A.; Nieman, Linda T.; Jones, Howland D.; Sinclair, Michael B.; Haaland, David M.; Guzowski, John F.

Hyperspectral imaging provides complex image data with spectral information from many fluorescent species contained within the sample such as the fluorescent labels and cellular or pigment autofluorescence. To maximize the utility of this spectral imaging technique it is necessary to couple hyperspectral imaging with sophisticated multivariate analysis methods to extract meaningful relationships from the overlapped spectra. Many commonly employed multivariate analysis techniques require the identity of the emission spectra of each component to be known or pure component pixels within the image, a condition rarely met in biological samples. Multivariate curve resolution (MCR) has proven extremely useful for analyzing hyperspectral and multispectral images of biological specimens because it can operate with little or no a priori information about the emitting species, making it appropriate for interrogating samples containing autofluorescence and unanticipated contaminating fluorescence. To demonstrate the unique ability of our hyperspectral imaging system coupled with MCR analysis techniques we will analyze hyperspectral images of four-color in-situ hybridized rat brain tissue containing 455 spectral pixels from 550 - 850 nm. Even though there were only four colors imparted onto the tissue in this case, analysis revealed seven fluorescent species, including contributions from cellular autofluorescence and the tissue mounting media. Spectral image analysis will be presented along with a detailed discussion of the origin of the fluorescence and specific illustrations of the adverse effects of ignoring these additional fluorescent species in a traditional microscopy experiment and a hyperspectral imaging system.

More Details

Reverse engineering biological networks :applications in immune responses to bio-toxins

Faulon, Jean-Loup M.; Zhang, Zhaoduo Z.; Martino, Anthony M.; Timlin, Jerilyn A.; Haaland, David M.; Davidson, George S.; May, Elebeoba E.; Slepoy, Alexander S.

Our aim is to determine the network of events, or the regulatory network, that defines an immune response to a bio-toxin. As a model system, we are studying T cell regulatory network triggered through tyrosine kinase receptor activation using a combination of pathway stimulation and time-series microarray experiments. Our approach is composed of five steps (1) microarray experiments and data error analysis, (2) data clustering, (3) data smoothing and discretization, (4) network reverse engineering, and (5) network dynamics analysis and fingerprint identification. The technological outcome of this study is a suite of experimental protocols and computational tools that reverse engineer regulatory networks provided gene expression data. The practical biological outcome of this work is an immune response fingerprint in terms of gene expression levels. Inferring regulatory networks from microarray data is a new field of investigation that is no more than five years old. To the best of our knowledge, this work is the first attempt that integrates experiments, error analyses, data clustering, inference, and network analysis to solve a practical problem. Our systematic approach of counting, enumeration, and sampling networks matching experimental data is new to the field of network reverse engineering. The resulting mathematical analyses and computational tools lead to new results on their own and should be useful to others who analyze and infer networks.

More Details
Results 1–25 of 39
Results 1–25 of 39