Publications

7 Results
Skip to search filters

High energy X-ray imaging diagnostics of nanosecond pulse accelerators

Proceedings of SPIE - The International Society for Optical Engineering

Smith, Graham W.; Hohlfelder, Robert J.; Tribe, Alun J.; Beutler, David E.; Gallegos, Roque R.; Seymour, Calvin L.G.; Thompson, Jon A.

X-ray imaging has been undertaken on Sandia National Laboratories' radiation effects x-ray simulators. These simulators typically yield a single very short (<20ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad (Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.5 to 1.8MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and an evaluation of the capability of the spectrometer are presented. © British Crown Copyright 2006/MOD.

More Details

1- and 2-frame monochromatic x-ray imaging of NIF-like capsules on Z and future higher-energy higher-resolution 2- & 4-frame x-radiography plans for ZR

Bennett, Guy R.; Campbell, David V.; Claus, Liam D.; Foresi, James S.; Johnson, Drew J.; Jones, Michael J.; Keller, Keith L.; Leifeste, Gordon T.; McPherson, Leroy A.; Mulville, Thomas D.; Neely, Kelly A.; Sinars, Daniel S.; Herrmann, Mark H.; Rambo, Patrick K.; Rovang, Dean C.; Ruggles, Larry R.; Simpson, Walter W.; Speas, Christopher S.; Wenger, D.F.; Smith, Ian C.; Cuneo, M.E.; Adams, Richard G.; Atherton, B.W.; Barnard, Wilson J.; Beutler, David E.; Burr, Robert A.

Abstract not provided.

Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

Hohlfelder, Robert J.; Beutler, David E.; Gallegos, Roque R.

Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

More Details
7 Results
7 Results