Publications

10 Results
Skip to search filters

Enterprise and system of systems capability development life-cycle processes

Beck, David F.

This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While the approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.

More Details

Technology development life cycle processes

Beck, David F.

This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

More Details

Assessing the operational life of flexible printed boards intended for continuous flexing applications : a case study

Beck, David F.

Through the vehicle of a case study, this paper describes in detail how the guidance found in the suite of IPC (Association Connecting Electronics Industries) publications can be applied to develop a high level of design assurance that flexible printed boards intended for continuous flexing applications will satisfy specified lifetime requirements.

More Details

Fatigue behavior of thin Cu foils and Cu/Kapton flexible circuits

Materials Science and Technology Conference and Exhibition, MS and T'08

Beck, David F.; Susan, D.F.; Sorensen, Neil R.; Thayer, Gayle E.

A series of thin electrodeposited Cu foils and Cu foil/Kapton flex circuits were tested in bending fatigue according to ASTM E796 and IPC-TM-650. The fatigue behavior was analyzed in terms of strain vs. number of cycles to failure, using a Coffin-Manson approach. The effects of Cu foil thickness and Cu trace width are discussed. The Cu foils performed as expected and the Cu foil/Kapton® (E.I. du Pont de Nemours and Company, Wilmington, DE) composites showed significant improvement in fatigue lifetime due to the composite strengthening effect of the Kapton layers. However, the flex circuits showed more scatter in fatigue life based on electrical continuity. The effect of the Kapton layers manifests itself by significantly more widespread microcracking in the Cu traces and the extent of microcracking depended on the strain level. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. © 2008 MS&T'08 ®.

More Details

MPC&A training needs of the NIS/Baltics States

Beck, David F.; Stoy-McLeod, Carol L.

This report serves to document contract deliverables considered to be of continuing interest associated with two workshops conducted as part of an initial assessment of Material Protection, Control, and Accounting (MPC&A) training needs of the Newly Independent and Baltic States (NIS/Baltics). These workshops were held in Kiev, Ukraine, ca. 2003-2004, with the assistance of personnel from the George Kuzmycz Training Center (GKTC) of the Kiev Institute of Nuclear Research (KINR). Because of the dominant role Ukraine plays in the region in terms of the nuclear industry, one workshop focused exclusively on Ukrainian training needs, with participants attending from twelve Ukrainian organizations (plus U.S. DOE/NNSA representatives). The second workshop included participation by a further ten countries from the NIS/Baltics region. In addition, the training needs data developed during the workshop were supplemented by the outcomes of surveys and studies conducted by the GKTC.

More Details

A systematic method for identifying vital areas at complex nuclear facilities

Beck, David F.

Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

More Details
10 Results
10 Results