Publications

17 Results
Skip to search filters

Conductivity Degradation of Polyvinylidene Fluoride Composite Binder during Cycling: Measurements and Simulations for Lithium-Ion Batteries

Journal of the Electrochemical Society

Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; Roberts, Scott A.; Barringer, David A.; Snyder, Chelsea M.; Janvrin, Madison R.; Apblett, Christopher A.

The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45-75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling of lithium cobalt oxide (LiCoO2 ) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30-40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Finally, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation - electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.

More Details

Rheological and Mechanical Property Measurements of PMDI Foam at Elevated Temperatures

Nemer, Martin N.; Brooks, Carlton F.; Shelden, Bion S.; Soehnel, Melissa M.; Barringer, David A.

A study was undertaken to determine the viscosity of liquefied 20 lb/ft3 poly methylene diisocyanate (PMDI) foam and the stress required to puncture solid PMDI foam at elevated temperatures. For the rheological measurements the foam was a priori liquefied in a pressure vessel such that the volatiles were not lost in the liquefaction process. The viscosity of the liquefied PMDI foam was found to be Newtonian with a power law dependence on temperature log10(μ/Pa s) = 20.6 – 9.5 log10(T/°C) for temperatures below 170 °C. Above 170 °C, the viscosity was in the range of 0.3 Pa s which is close to the lower measurement limit (≈ 0.1 Pa s) of the pressurized rheometer. The mechanical pressure required to break through 20lb/ft3 foam was 500-800 psi at temperatures from room temperature up to 180 °C. The mechanical pressure required to break through 10 lb/ft3 was 170-300 psi at temperatures from room temperature up to 180 °C. We have not been able to cause gas to break through the 20 lb/ft3 PMDI foam at gas pressures up to 100 psi.

More Details

New composite separator pellet to increase power density and reduce size of thermal batteries

Mondy, L.A.; Evans, Lindsey E.; Roberts, Christine C.; Grillet, Anne M.; Soehnel, Melissa M.; Barringer, David A.; DiAntonio, Christopher D.; Chavez, Tom C.; Ingersoll, David I.; Hughes, Lindsey G.

We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

More Details

First-principles flocculation as the key to low energy algal biofuels processing

Hewson, John C.; Mondy, L.A.; Murton, Jaclyn K.; O'Hern, Timothy J.; Parchert, Kylea J.; Pohl, Phillip I.; Williams, Cecelia V.; Wyatt, Nicholas B.; Barringer, David A.; Pierce, Flint P.; Brady, Patrick V.; Dwyer, Brian P.; Grillet, Anne M.; Hankins, M.G.; Hughes, Lindsey G.; Lechman, Jeremy B.

This document summarizes a three year Laboratory Directed Research and Development (LDRD) program effort to improve our understanding of algal flocculation with a key to overcoming harvesting as a techno-economic barrier to algal biofuels. Flocculation is limited by the concentrations of deprotonated functional groups on the algal cell surface. Favorable charged groups on the surfaces of precipitates that form in solution and the interaction of both with ions in the water can favor flocculation. Measurements of algae cell-surface functional groups are reported and related to the quantity of flocculant required. Deprotonation of surface groups and complexation of surface groups with ions from the growth media are predicted in the context of PHREEQC. The understanding of surface chemistry is linked to boundaries of effective flocculation. We show that the phase-space of effective flocculation can be expanded by more frequent alga-alga or floc-floc collisions. The collision frequency is dependent on the floc structure, described in the fractal sense. The fractal floc structure is shown to depend on the rate of shear mixing. We present both experimental measurements of the floc structure variation and simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). Both show a densification of the flocs with increasing shear. The LAMMPS results show a combined change in the fractal dimension and a change in the coordination number leading to stronger flocs.

More Details
17 Results
17 Results