Advances in Alkaline Conversion Batteries for Grid Storage Applications
Abstract not provided.
Abstract not provided.
Electroanalysis
Anodic stripping voltammetry (ASV) has been widely used for the detection of several heavy metal ions in neutral and acidic solution, in many cases employing electrodes and/or solutions incorporating Bi. In this work we demonstrate that Bi(OH)4− ion concentration can be measured in highly alkaline 8.5 M KOH solution using ASV. The addition of Pb in similar concentrations to the Bi(OH)4− being measured is shown to improve both the sensitivity and precision of the method. When the Pb additive is employed, a formal limit of detection of 8.5 ppb is achieved, compared to 17.3 ppb when the Pb additive is not used. Due to the use of Bi additives in alkaline battery chemistries, it follows that separators which limit Bi(OH)4− diffusion into the bulk electrolyte and away from the electrodes are of interest. For this purpose, we utilize ASV to determine Bi(OH)4− diffusion rates through Celgard 3501, cellophane 350P00, and Nafion 211. Bi(OH)4− crossover rates, as determined by ASV, are shown to be repeatable and consistent with expectations from the known separator structure.
Abstract not provided.
Grid-level energy storage systems are needed to enable intermittent renewables. Li-ion, Pb-acid battery systems have been implemented but pose safety and environmental risks. Successful grid storage must be safe, reliable, and low-cost.
ACS Applied Materials and Interfaces
Alkaline zinc-manganese dioxide (Zn-MnO2) batteries are well suited for grid storage applications because of their inherently safe, aqueous electrolyte and established materials supply chain, resulting in low production costs. With recent advances in the development of Cu/Bi-stabilized birnessite cathodes capable of the full 2-electron capacity equivalent of MnO2 (617 mA h/g), there is a need for selective separators that prevent zincate (Zn(OH)4)2- transport from the anode to the cathode during cycling, as this electrode system fails in the presence of dissolved zinc. Herein, we present the synthesis of N-butylimidazolium-functionalized polysulfone (NBI-PSU)-based separators and evaluate their ability to selectively transport hydroxide over zincate. We then examine their impact on the cycling of high depth of discharge Zn/(Cu/Bi-MnO2) batteries when inserted in between the cathode and anode. Initially, we establish our membranes' selectivity by performing zincate and hydroxide diffusion tests, showing a marked improvement in zincate-blocking (DZn (cm2/min): 0.17 ± 0.04 × 10-6 for 50-PSU, our most selective separator vs 2.0 ± 0.8 × 10-6 for Cellophane 350P00 and 5.7 ± 0.8 × 10-6 for Celgard 3501), while maintaining similar crossover rates for hydroxide (DOH (cm2/min): 9.4 ± 0.1 × 10-6 for 50-PSU vs 17 ± 0.5 × 10-6 for Cellophane 350P00 and 6.7 ± 0.6 × 10-6 for Celgard 3501). We then implement our membranes into cells and observe an improvement in cycle life over control cells containing only the commercial separators (cell lifetime extended from 21 to 79 cycles).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.