Publications

Results 1–25 of 64
Skip to search filters

Reflection and Transmission of Plane Electromagnetic Waves by a Geologic Layer

Aldridge, David F.

Electric field and magnetic field reflection and transmission responses generated by a plane wave normally incident onto a finite - thickness geologic layer are mathematically derived and numerically evaluated. A thin layer with enhanced electric current conductivity and/or magnetic permeability is a reasonable geophysical representation of a hydraulic fracture inject ed with a high - contrast proppant pack. Both theory and numerics indicate that backward - and forward - scattered electromagnetic wavefields are potentially observable in a field experiment, despite the extreme thinness of a fracture compared to a typical low - frequency electromagnetic wavelength. The First Born Approximation (FBA) representation of layer scattering, significant for inversion studies, is shown to be accurate for a thin layer with mild medium parameter (i.e., conductivity, permeability, and per mittivity) contrasts with the surrounding homogeneous wholespace. However, FBA scattering theory breaks down for thick layers and strong parameter contrasts. ACKNOWLEDGEMENTS Sandia National Laboratories is a multi - mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. This research is conducted under the auspices of CRADA (Cooperative Research and Development Agreement) SC11/01780.00 between Carbo Ceramics Inc. and Sandia National Laboratories. The author acknowledges former Carbo R&D Vic e - President Mr. Chad Cannan and former SNL Geophysics Department manage r Ms. Amy Halloran for their interest i n and support of this work. Technical discussions with Project Manager and Principal Investigator Dr. Chester J. Weiss of the SNL Geophysics Department greatly benefited this work. Dr. Lewis C. Bartel, formerly with S NL and presently a consultant to Carbo Ceramics, provided many useful and intuitive insights, and is acknowledged as the originator of the concept underpinning a recent patent grant (Aldridge and Bartel, 2016) involving electromagnetic wave scattering.

More Details

The direct-current response of electrically conducting fractures excited by a grounded current source

Geophysics

Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; Schramm, Kimberly A.; Bartel, Lewis C.

Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross-cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long-term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures-knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electrical conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. This approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity - the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.

More Details

Visco-TTI-elastic FWI using discontinuous galerkin

SEG Technical Program Expanded Abstracts

Ober, Curtis C.; Smith, Thomas M.; Overfelt, James R.; Collis, Samuel S.; von Winckel, Gregory J.; van Bloemen Waanders, Bart G.; Downey, Nathan J.; Mitchell, Scott A.; Bond, Stephen D.; Aldridge, David F.; Krebs, Jerome R.

The need to better represent the material properties within the earth's interior has driven the development of higherfidelity physics, e.g., visco-tilted-transversely-isotropic (visco- TTI) elastic media and material interfaces, such as the ocean bottom and salt boundaries. This is especially true for full waveform inversion (FWI), where one would like to reproduce the real-world effects and invert on unprocessed raw data. Here we present a numerical formulation using a Discontinuous Galerkin (DG) finite-element (FE) method, which incorporates the desired high-fidelity physics and material interfaces. To offset the additional costs of this material representation, we include a variety of techniques (e.g., non-conformal meshing, and local polynomial refinement), which reduce the overall costs with little effect on the solution accuracy.

More Details

Experiment design study in 3d dc resistivity: Adjoint sensitivities in a horizontal steel-cased borehole

SEG Technical Program Expanded Abstracts

Weiss, Chester J.; Knox, Hunter A.; Aldridge, David F.

We investigate a novel application of Fŕechet derivatives for time-lapse mapping of deep, electrically-enhanced fracture systems with a borehole to surface DC resistivity array. The simulations are evaluated for a cased horizontal wellbore embedded in a homogeneous halfspace, where measurements are evaluated near, mid-range, and far from the well head. We show that, in all cases, measurements are sensitive to perturbations centered on the borehole axis and that the sensitivity volume decreases as a function of increased measurement offset from the well head. The sensitivity analysis also illustrates that careful consideration must be taken when developing an electrical survey design for these scenarios. Specifically, we show that positive perturbations in earth conductivity near the wellbore can manifest as both positive and negative measurement perturbations, depending on where the measurement is taken. Furthermore, we show that the transition between the regions along the wellbore of positive and negative contribution results in a "pinch point", representing a region along the wellbore where a given surface measurement is blind to any changes or enhancement of electrical conductivity.

More Details

The DC response of electrically conducting fractures excited by a grounded current source

SEG Technical Program Expanded Abstracts

Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; Schramm, Kimberly A.; Bartel, Lewis C.

We investigate through numerical simulation the usefulness of DC resistivity data for characterizing subsurface fractures with elevated electrical conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the borehole casing behaves electrically as a spatially extended line source, efficiently energizing the fractures with a steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: a local perturbation in the electric potential proximal the fracture set, with limited far-field expression; and, an overall reduction in the electric potential along the entire length of borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measureable effect that can be observed far from fractures themselves, at distances where the local perturbations in the electric potential around the fractures are imperceptible. Under these conditions, our results suggest that far-field, time-lapse measurements of DC potentials surrounding a borehole casing can be reasonably interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. Such an approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity - the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.

More Details

Is a steel-cased borehole an electrical transmission line?

SEG Technical Program Expanded Abstracts

Aldridge, David F.; Weiss, Chester J.; Knox, Hunter A.; Schramm, Kimberly A.; Bartel, Lewis C.

Under certain restricting assumptions, an electrically energized steel-cased geologic borehole may be modeled as an electrical transmission line. Current waveforms are obtained by solving the governing telegraph equation in the frequency-domain, followed by numerical inverse Fourier transformation. Electric current pulses propagating along the borehole undergo progressive amplitude loss and waveform distortion with distance, arising from leakage of current into the surrounding geology. A major modeling uncertainty involves the proper boundary condition to impose at the end of a borehole transmission line.

More Details

Electromagnetic Reciprocity

Aldridge, David F.

A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

More Details
Results 1–25 of 64
Results 1–25 of 64