Publications

10 Results
Skip to search filters

Cell-directed assembly on an integrated nanoelectronic/nanophotonic device for probing cellular responses on the nanoscale

Dunphy, Darren R.; Burckel, David B.; Singh, Seema S.; Tallant, David T.; Simpson, Regina L.; Fan, Hongyou F.; Brinker, C.J.

Our discovery that the introduction of living cells (Saccharomyces cerevisiae) alters dramatically the evaporation driven self-assembly of lipid-silica nanostructures suggested the formation of novel bio/nano interfaces useful for cellular interrogation at the nanoscale. This one year ''out of the box'' LDRD focused on the localization of metallic and semi-conducting nanocrystals at the fluid, lipid-rich interface between S. cerevisiae and the surrounding phospholipid-templated silica nanostructure with the primary goal of creating Surface Enhanced Raman Spectroscopy (SERS)-active nanostructures and platforms for cellular integration into electrode arrays. Such structures are of interest for probing cellular responses to the onset of disease, understanding of cell-cell communication, and the development of cell-based bio-sensors. As SERS is known to be sensitive to the size and shape of metallic (principally gold and silver) nanocrystals, various sizes and shapes of nanocrystals were synthesized, functionalized and localized at the cellular surface by our ''cell-directed assembly'' approach. Laser scanning confocal microscopy, SEM, and in situ grazing incidence small angle x-ray scattering (GISAXS) experiments were performed to study metallic nanocrystal localization. Preliminary Raman spectroscopy studies were conducted to test for SERS activity. Interferometric lithography was used to construct high aspect ratio cylindrical holes on patterned gold substrates and electro-deposition experiments were performed in a preliminary attempt to create electrode arrays. A new printing procedure was also developed for cellular integration into nanostructured platforms that avoids solvent exposure and may mitigate osmotic stress. Using a different approach, substrates comprised of self-assembled nanoparticles in a phospholipid templated silica film were also developed. When printed on top of these substrates, the cells integrate themselves into the mesoporous silica film and direct organization of the nanoparticles to the cell surface for integration into the cell.

More Details

Development of an efficient large-aperture high damage-threshold sol-gel diffraction grating

Rambo, Patrick K.; Schwarz, Jens S.; Smith, Ian C.; Ashley, Carol S.; Branson, Eric D.; Dunphy, Darren R.; Cook, Adam W.; Reed, Scott T.; Johnson, William Arthur.

In order to develop the next generation of high peak intensity lasers, new grating technology providing higher damage thresholds and large apertures is required. The current assumption is that this technical innovation will be multilayer dielectric gratings, wherein the uppermost layer of a thin film mirror is etched to create the desired binary phase grating. A variant of this is explored with the upper grating layer being a lower density gelatin-based volume phase grating in either sol-gel or dichromated gelatin. One key benefit is the elimination of the etching step.

More Details

Anomalously high photocurrents in nanostructured electrodes : a new local microchip power source

Brinker, C.J.; Dunphy, Darren R.; Brozik, Susan M.; Brinker, C.J.

An increase in photocurrent has been observed at silicon electrodes coated with nanostructured porous silica films as compared to bare, unmodified silicon. Ultimately, to utilize this effect in devices such as sensors or microchip power supplies, the physical phenomena behind this observation need to be well characterized. To this end, Electrochemical Impedance Spectroscopy (EIS) was used to characterize the effect of surfactant-templated mesoporous silica films deposited onto silicon electrodes on the electrical properties of the electrode space-charge region in an aqueous electrolyte solution, as the electrical properties of this space-charge region are responsible for the photobehavior of semiconductor devices. A significant shift in apparent flat-band potential was observed for electrodes modified with the silica film when compared to bare electrodes; the reliability of this data is suspect, however, due to contributions from surface states to the overall capacitance of the system. To assist in the interpretation of this EIS data, a series of measurements at Pt electrodes was performed with the hope of decoupling electrode and film contributions from the EIS spectra. Surprisingly, the frequency-dependent impedance data for Pt electrodes coated with a surfactant-templated film was nearly identical to that observed for bare Pt electrodes, indicating that the mesoporous film had little effect on the transport of small electrolyte ions to the electrode surface. Pore-blocking agents (tetraalkylammonium salts) were not observed to inhibit this transport process. However, untemplated (non-porous) silica films dramatically increased film resistance, indicating that our EIS data for the Pt electrodes is reliable. Overall, our preliminary conclusion is that a shift in electrical properties in the space-charge region induced by the presence of a porous silica film is responsible for the increase in observed photocurrent.

More Details

Biocompatible self-assembly of nano-materials for Bio-MEMS and insect reconnaissance

Brinker, C.J.; Sinclair, Michael B.; Timlin, Jerilyn A.; Cesarano, Joseph C.; Brinker, C.J.; Baca, Helen K.; Flemming, Jeb H.; Dunphy, Darren R.; Brozik, Susan M.; Werner-Washburne, Margaret

This report summarizes the development of new biocompatible self-assembly procedures enabling the immobilization of genetically engineered cells in a compact, self-sustaining, remotely addressable sensor platform. We used evaporation induced self-assembly (EISA) to immobilize cells within periodic silica nanostructures, characterized by unimodal pore sizes and pore connectivity, that can be patterned using ink-jet printing or photo patterning. We constructed cell lines for the expression of fluorescent proteins and induced reporter protein expression in immobilized cells. We investigated the role of the abiotic/biotic interface during cell-mediated self-assembly of synthetic materials.

More Details

Aqueous Stability of Mesoporous Silica Films Doped or Grafted with Aluminum Oxide

Langmuir

Dunphy, Darren R.; Singer, Sarany; Cook, Adam W.; Smarsly, Bernd; Doshi, Dhaval D.; Brinker, C.J.

Surfactant-templated silica thin films are potentially important materials for applications such as chemical sensing. However, a serious limitation for their use in aqueous environments is their poor hydrolytic stability. One convenient method of increasing the resistance of mesoporous silica to water degradation is addition of alumina, either doped into the pore walls during material synthesis or grafted onto the pore surface of preformed mesophases. Here, we compare these two routes to Al-modified mesoporous silica with respect to their effectiveness in decreasing the solubility of thin mesoporous silicate films. Direct synthesis of templated silica films prepared with Al/Si = 1:50 was found to limit film degradation, as measured by changes in film thickness, to less than 15% at near-neutral pH over a 1 week period. In addition to suppressing film dissolution, addition of Al can also cause structural changes in silica films templated with the nonionic surfactant Brij 56 (C 16H 33(OCH 2CH 2) n∼10OH), including mesophase transformation, a decrease in accessible porosity, and an increase in structural disorder. The solubility behavior of films is also sensitive to their particular mesophase, with 3D phases (cubic, disordered) possessing less internal but more thickness stability than 2D phases (hexagonal), as determined with ellipsometric measurements. Finally, grafting of Al species onto the surface of surfactant-templated silica films also significantly increases aqueous stability, although to a lesser extent than the direct synthesis route.

More Details

Nanostructured polyoxometalate arrays with unprecedented properties and functions

Nyman, M.; Nyman, M.; Dunphy, Darren R.; Brinker, C.J.

Polyoxometalates (POMs) are ionic (usually anionic) metal -oxo clusters that are both functional entities for a variety of applications, as well as structural units that can be used as building blocks if reacted under appropriate conditions. This is a powerful combination in that functionality can be built into materials, or doped into matrices. Additionally, by assembling functional POMs in ordered materials, new collective behaviors may be realized. Further, the vast variety of POM geometries, compositions and charges that are achievable gives this system a high degree of tunability. Processing conditions to link together POMs to build materials offer another vector of control, thus providing infinite possibilities of materials that can he nano-engineered through POM building blocks. POM applications that can be built into POM-based materials include catalysis, electro-optic and electro-chromic, anti-viral, metal binding, and protein binding. We have begun to explore three approaches in developing this field of functional, nano-engineered POM-based materials; and this report summarizes the work carried out for these approaches to date. The three strategies are: (1) doping POMs into silica matrices using sol-gel science, (2) forming POM-surfactant arrays and metal-POM-surfactant arrays, (3) using aerosol-spray pyrolysis of the POM-surfactant arrays to superimpose hierarchical architecture by self-assembly during aerosol-processing. Doping POMs into silica matrices was successful, but the POMs were partially degraded upon attempts to remove the structure-directing templates. The POM-surfactant and metal-POM-surfactant arrays approach was highly successful and holds much promise as a novel approach to nano-engineering new materials from structural and functional POM building blocks, as well as forming metastable or unusual POM geometries that may not be obtained by other synthetic methods. The aerosol-assisted self assembly approach is in very preliminary state of investigation, but also shows promise in that structured materials were formed; where the structure was altered by aerosol processing. We will be seeking alternative funding to continue investigating the second synthetic strategy that we have begun to develop during this 1-year project.

More Details

In-situ X-ray scattering study of continuous silica - Surfactant self-assembly during steady-state dip coating

Journal of Physical Chemistry B

Doshi, Dhaval D.; Gibaud, Alain; Liu, Nanguo; Sturmayr, Dietmar; Malanoski, Anthony P.; Dunphy, Darren R.; Chen, Hongji; Narayanan, Suresh; MacPhee, Andrew; Wang, Jin; Reed, Scott T.; Hurd, Alan J.; Van Swol, Frank; Brinker, C.J.

Inorganic mesoporous thin-films are important for applications such as membranes, sensors, low-dielectric-constant insulators (so-called low κ dielectrics), and fluidic devices. Over the past five years, several research groups have demonstrated the efficacy of using evaporation accompanying conventional coating operations such as spin- and dip-coating as an efficient means of driving the self-assembly of homogeneous solutions into highly ordered, oriented, mesostructured films. Understanding such evaporation-induced self-assembly (EISA) processes is of interest for both fundamental and technological reasons. Here, we use spatially resolved 2D grazing incidence X-ray scattering in combination with optical interferometry during steady-state dipcoating of surfactant-templated silica thin-films to structurally and compositionally characterize the EISA process. We report the evolution of a hexagonal (p6 mm) thin-film mesophase from a homogeneous precursor solution and its further structural development during drying and calcination. Monte Carlo simulations of water/ethanol/surfactant bulk phase behavior are used to investigate the role of ethanol in the self-assembly process, and we propose a mechanism to explain the observed dilation in unit cell dimensions during solvent evaporation.

More Details
10 Results
10 Results