Publications

9 Results
Skip to search filters

Fire-Induced Pressure Response and Failure Characterization of PCV/SCV/3013 Containers - Phase 3

Mendoza, Hector M.; Baird, Austin R.; Gill, Walt; Figueroa Faria, Victor G.; McClard, James M.; Sprankle, Ray S.; Hensel, Steve H.; Michel, Danielle M.; Adee, Shane M.

Several Department of Energy (DOE) facilities have materials stored in robust, welded, stainless - steel containers with presumed fire - induced pressure response behaviors. Lack of test data related to fire exposure requires conservative safety analysis assumptions for container response at these facilities. This conservatism can in turn result in the implementation of challenging operational restrictions with costly nuclear safety controls. To help address this issue for sites that store DOE 3013 stainless - steel containers, a series of ten tests were undertaken at Sandia National Laboratories. The goal of this test series was to obtain the response behavior for various configurations of DOE 3013 containers with various payload compositions when exposed to one of two ASTM fire conditions. Key parameters measured in the test series included identification of failure - specific characteristics such as pressure, temperature, and whether or not a vessel was breached during a test . Numerous failure - specific characteristics were identified from the ten tests. This report describes the implementation and execution of the test series performed to identify these failure - specific characteristics. Discussions on the test configurations, payload compositions, thermal insults, and experimental setups are presented. Test results in terms of pressurization and vessel breach (or no - breach) are presented along with corresponding discussions for each test.

More Details

30 CM horizontal drop of a surrogate 17x17 pwr fuel assembly

American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP

Kalinina, Elena A.; Ammerman, Douglas J.; Grey, Carissa A.; Flores, Gregg J.; Lujan, Lucas; Saltzstein, Sylvia J.; Michel, Danielle M.

The 30 cm drop is the remaining NRC normal conditions of transport (NCT) regulatory requirement (10 CFR 71.71) for which there are no data on the response of spent fuel. While obtaining data on the spent fuel is not a direct requirement, it allows for quantifying the risk of fuel breakage resulting from a cask drop from a height of 30 cm or less. Because a full-scale cask and impact limiters are very expensive, 3 consecutive drop tests were conducted to obtain strains on a full-scale surrogate 17x17 PWR assembly. The first step was a 30 cm drop of a 1/3 scale cask loaded with dummy assemblies. The second step was a 30 cm drop test of a full-scale dummy assembly. The third step was a 30 cm drop of a full-scale surrogate assembly. The results of this final test are presented in this paper. The test was conducted in May 2020. The acceleration pulses on the surrogate assembly were in good agreement with the expected pulses derived from steps 1 and 2. This confirmed that during the 30 cm drop the surrogate assembly experienced the same conditions as it would have if it had been dropped in a full-scale cask with impact limiters. The surrogate assembly was instrumented with 27 strain gauges. Pressure paper was inserted between the rods within the two long and two short spacer grid spans in order to register the pressure in case of rod-to-rod contact. The maximum observed peak strain on the surrogate assembly was 1,724 microstrain at the bottom end of the assembly. The pressure paper sheets from the two short spans were blank. The pressure paper sheets from the two long spans, except a few middle ones, showed marks indicating rod-to-rod contact. The maximum estimated contact pressure was 4,100 psi. The longitudinal bending stress corresponding to the maximum observed strain value (calculated from the stress-strain curve for low burnup cladding) was 22,230 psi. Both values are significantly below the yield strength of the cladding. The major conclusion is that the fuel rods will maintain their integrity following a 30 cm drop inside of a transportation cask.

More Details

Chemical analyses of soil samples collected from the vicinity of the thermal test complex at Sandia National Laboratories, New Mexico environs, 2006

Michel, Danielle M.

In the summer of 2006, the Environmental Programs and Assurance Department of Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM), collected surface soil samples at 37 locations within one mile of the vicinity of the newly constructed Thermal Test Complex (TTC) for the purpose of determining baseline conditions against which potential future impacts to the environs from operations at the facility could be assessed. These samples were submitted to an offsite analytical laboratory for metal-in-soil analyses. This work provided the SNL Environmental Programs and Assurance Department with a sound baseline data reference set against which to assess potential future operational impacts at the TTC. In addition, it demonstrates the commitment that the Laboratories have to go beyond mere compliance to achieve excellence in its operations. This data are presented in graphical format with narrative commentaries on particular items of interest.

More Details
9 Results
9 Results