Image Processing Techniques for Structural Dynamics Testing using Radiographic Images
Abstract not provided.
Abstract not provided.
Rattlesnake is a combined-environments, multiple input/multiple output control system for dynamic excitation of structures under test. It provides capabilities to control multiple responses on the part using multiple exciters using various control strategies. Rattlesnake is written in the Python programming language to facilitate multiple input/multiple output vibration research by allowing users to prescribe custom control laws to the controller. Rattlesnake can target multiple hardware devices, or even perform synthetic control to simulate a test virtually. Rattlesnake has been used to execute control problems with up to 200 response channels and 12 drives. This document describes the functionality, architecture, and usage of the Rattlesnake controller to perform combined environments testing.
Abstract not provided.
Abstract not provided.
Experimental Techniques
Digital image correlation (DIC) is an established test technique in several fields including quasi-static displacement measurements. Recently there has been growing interest in using DIC to measure structural dynamic response and even extract modal parameters from that information. While high-speed cameras have become more ubiquitous, there are no commercial end-to-end packages for modal analysis based on image data, particularly when combined with traditional data acquisition systems. As such, the practitioner is left to develop several key data processing capabilities, hardware interface equipment, and testing practices themselves. This work highlights several practical aspects that have been encountered while establishing DIC as a viable modal testing capability in a laboratory environment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
Laser vibrometry has become a mature technology for structural dynamics testing, enabling many measurements to be obtained in a short amount of time without mass-loading the part. Recently multi-point laser vibrometers consisting of 48 or more measurement channels have been introduced to overcome some of the limitations of scanning systems, namely the inability to measure multiple data points simultaneously. However, measuring or estimating the alignment (Euler angles) of many laser beams for a given test setup remains tedious and can require a significant amount of time to complete and adds an unquantified source of uncertainty to the measurement. This paper introduces an alignment technique for the multipoint vibrometer system that utilizes photogrammetry to triangulate laser spots from which the Euler angles of each laser head relative to the test coordinate system can be determined. The generated laser beam vectors can be used to automatically create a test geometry and channel table. While the approach described was performed manually for proof of concept, it could be automated using the scripting tools within the vibrometer system.
Conference Proceedings of the Society for Experimental Mechanics Series
Understanding the dynamic response of a structure is critical to design. This is of extreme importance in high-consequence systems on which human life can depend. Historically, these structures have been modeled as linear, where response scales proportionally with excitation amplitude. However, most structures are nonlinear to the extent that linear models are no longer sufficient to adequately capture important dynamics. Sources of nonlinearity include, but are not limited to: large deflections (so called geometric nonlinearities), complex materials, and frictional interfaces/joints in assemblies between subcomponents. Joint nonlinearities usually cause the natural frequency to decrease and the effective damping ratio to increase with response amplitude due to microslip effects. These characteristics can drastically alter the dynamics of a structure and, if not well understood, could lead to unforeseen failure or unnecessarily over-designed features. Nonlinear structural dynamics has been a subject of study for many years, and provide a summary of recent developments and discoveries in this field. One topic discussed in these papers are nonlinear normal modes (NNMs) which are periodic solutions of the underlying conservative system. They provide a theoretical framework for describing the energy-dependence of natural frequencies and mode shapes of nonlinear systems, and lead to a promising method to validate nonlinear models. In and, a force appropriation testing technique was developed which allowed for the experimental tracking of undamped NNMs by achieving phase quadrature between the excitation and response. These studies considered damping to be small to moderate, and constant. Nonlinear damping of an NNM was studied in using power-based quantities for a structure with a discrete, single-bolt interface. In this work, the force appropriation technique where phase quadrature is achieved between force and response as described in is applied to a target mode of a structure with two bolted joints, one of which comprised a large, continuous interface. This is a preliminary investigation which includes a study of nonlinear natural frequency, mode shape, and damping trends extracted from the measured data.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
The Box Assembly with Removable Component (BARC) structure was developed as a challenge problem for those investigating boundary conditions and their effect on structural dynamic tests. To investigate the effects of boundary conditions on the dynamic response of the Removable Component, it was tested in three configurations, each with a different fixture and thus a different boundary condition. A “truth” configuration test with the component attached to its next-level assembly (the Box) was first performed to provide data that multi-axis tests of the component would aim to replicate. The following two tests aimed to reproduce the component responses of the first test through multi-axis testing. The first of these tests is a more “traditional” vibration test with the removable component attached to a “rigid” plate fixture. A second set of these tests replaces the fixture plate with flexible fixtures designed using topology optimization and created using additive manufacturing. These two test approaches are compared back to the truth test to determine how much improvement can be obtained in a laboratory test by using a fixture that is more representative of the compliance of the component’s assembly.
Conference Proceedings of the Society for Experimental Mechanics Series
Multi-axis testing is growing in popularity in the testing community due to its ability to better match a complex three-dimensional excitation than a single-axis shaker test. However, with the ability to put a large number of shakers anywhere on the structure, the design space of such a test is enormous. This paper aims to investigate strategies for placement of shakers for a given test using a complex aerospace structure controlled to real environment data. Initially shakers are placed using engineering judgement, and this was found to perform reasonably well. To find shaker setups that improved upon engineering judgement, impact testing was performed at a large number of candidate excitation locations to generate frequency response functions that could be used to perform virtual control studies. In this way, a large number of shaker positions could be evaluated without needing to reposition the shakers each time. A brute force computation of all possible shaker setups was performed to find the set with the lowest error, but the computational cost of this approach is prohibitive for very large candidate shaker sets. Instead, an iterative approach was derived that found a suboptimal set that was nearly as good as the brute force calculation. Finally, an investigation into the number of shakers used for control was performed, which could help determine how many shakers might be necessary to perform a given test.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.