Aerosol deposition of chemical decontaminants dispersed through commercially available induction spray charging nozzles
Abstract not provided.
Abstract not provided.
Test data are reported that demonstrate the deposition from a spray dispersion system (Illinois Tool Works inductively charging rotary atomization nozzle) for application of decontamination solution to various surfaces in the passenger cabin of a Boeing 737 aircraft. The decontamination solution (EnviroTru) was tagged with a known concentration of fluorescein permitting determination of both airborne decontaminant concentration and surface deposited decontaminant solution so that the effective deposition rates and surface coverage could be determined and correlated with the amount of material sprayed. Six aerosol dispersion tests were conducted. In each test, aluminum foil deposition coupons were set out throughout the passenger area and the aerosol was dispersed. The aerosol concentration was measured with filter samplers as well as with optical techniques Average aerosol deposition ranged from 3 to 15 grams of decontamination solution per square meter. Some disagreement was observed between various instruments utilizing different measurement principles. These results demonstrate a potentially effective method to disperse decontaminant to interior surfaces of a passenger aircraft.
Aerosol Science and Technology
Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2-0.8 atm) and high face velocities (5-19 m/s) to give fiber Reynolds numbers lying in the viscous-inertial transition flow regime (1-15). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers underpredicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as air stream inertial forces become significant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin (1972) rather than Darcy's linear pressure-velocity relationship. Sodium chloride and iron nano-agglomerate aerosols were tested to provide a comparison between particles of dissimilar densities and shape factors. Total filter efficiency collapsed when plotted against the particle Stokes number and fiber Reynolds number. Efficiencies were then modeled with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20%-80% efficiency). A minimum in collection efficiency was observed at small Stokes numbers and attributed to interception and diffusive effects. The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations of single fiber efficiencies from the literature. Existing theories underpredicted measured single fiber efficiencies, although comparison is problematic. The assumption of uniform flow conditions for each successive layer of fibers is questionable; thus, the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime. Copyright © American Association for Aerosol Research.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Radioprotection
Abstract not provided.
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.
The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.
In February of 2005, a joint exercise involving Sandia National Laboratories (SNL) and the National Institute for Occupational Safety and Health (NIOSH) was conducted in Albuquerque, NM. The SNL participants included the team developing the Building Restoration Operations and Optimization Model (BROOM), a software product developed to expedite sampling and data management activities applicable to facility restoration following a biological contamination event. Integrated data-collection, data-management, and visualization software improve the efficiency of cleanup, minimize facility downtime, and provide a transparent basis for reopening. The exercise was held at an SNL facility, the Coronado Club, a now-closed social club for Sandia employees located on Kirtland Air Force Base. Both NIOSH and SNL had specific objectives for the exercise, and all objectives were met.
Abstract not provided.
This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption.
It was discovered that MgO or Mg(OH){sub 2} when it reacts with water is a very strong sorbent for arsenic. Distribution constants, or K{sub d} values, are as high as 1 x 10{sup 6} L/mole. In this work, Mg(OH){sub 2} and other compounds have been investigated as sorbents for arsenic and other contaminants. This work has resulted in several major accomplishments including: (1) design, construction, and testing of a pressure sand filter to remove Mg(OH){sub 2} after it has sorbed arsenic from water, (2) stabilization of Mg(OH){sub 2} as a Sorrel's cement against reaction with carbonate that results in MgCO{sub 3} formation decreasing the efficiency of Mg(OH){sub 2} to sorb arsenic, and (3) the development of a new, very promising sorbent for arsenic based on zirconium. Zirconium is an environmentally benign material found in many common products such as toothpaste. It is currently used in water treatment and is very inexpensive. In this work, zirconium has been bonded to activated carbon, zeolites, sand and montmorillonite. Because of its high charge in ionic form (+6), zirconium is a strong sorbent for many anions including arsenic. In equilibrium experiments arsenic concentrations in water were reduced from 200 ppb to less than 1 ppb in less than 1 minute of contact time. Additionally, analytical methods for detecting arsenic in water have also been investigated. Various analytical techniques including HPLC, AA and ICP-MS are used for quantification of arsenic. Due to large matrix interferences HPLC and AA techniques are not very selective and are time consuming. ICP-MS is highly efficient, requires a low sample volume and has a high tolerance for interferences. All these techniques are costly and require trained staff, and with the exception of ICP-MS, these methods cannot be used at low ppb arsenic concentration without using a pre-concentration step. An alternative to these traditional techniques is to use a colorimetric method based on leucocrystal violet dye interaction with iodine. This method has been adapted in our facility for quantifying arsenic concentrations down to 14 ppb.
Abstract not provided.
Abstract not provided.
Journal of Contaminant Hydrology
Abstract not provided.
Water Resources Research
The adequacy for laboratory testing of four dolomite cores from the Culebra Dolomite of the Rustler Formation at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, were evaluated using representative elementary volume (REV) theory. Gamma ray computerized tomography created three-dimensional grids of bulk density and macropore index over volumes from 1.4 x 10-7 to 1.6 L. Three different methods for both volume averaging and REV analysis were applied and compared. Both density and macropore index converged to single values with increasing volume, which meets the most common qualitative definition of a REV. Statistical test results for the relatively homogeneous samples indicate that volumes larger than 1 to 7 mL have constant properties. Contrarily, a highly varied sample required 250 and 373 mL to achieve invariant density and macropore characteristics, respectively. Prismatic volume averaging was found to be better than slice averaging, while a qualitative test for the REV provided similar results as a rigorous statistical method. All cores were larger than the REV but were significantly different from one another. This implies that multiple cores are necessary to determine the entire range of transport properties within the rock.