Publications

18 Results
Skip to search filters

Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries

iScience

Harrison, Katharine L.; Merrill, Laura C.; Long, Daniel M.; Randolph, Steven R.; Goriparti, Subrahmanyam G.; Christian, Joseph C.; Warren, Benjamin A.; Roberts, Scott A.; Harris, Stephen J.; Perry, Daniel L.; Jungjohann, Katherine L.

Li metal anodes are enticing for batteries due to high theoretical charge storage capacity, but commercialization is plagued by dendritic Li growth and short circuits when cycled at high currents. Applied pressure has been suggested to improve morphology, and therefore performance. We hypothesized that increasing pressure would suppress dendritic growth at high currents. To test this hypothesis, here, we extensively use cryogenic scanning electron microscopy to show that varying the applied pressure from 0.01 to 1 MPa has little impact on Li morphology after one deposition. We show that pressure improves Li density and preserves Li inventory after 50 cycles. However, contrary to our hypothesis, pressure exacerbates dendritic growth through the separator, promoting short circuits. Therefore, we suspect Li inventory is better preserved in cells cycled at high pressure only because the shorts carry a larger portion of the current, with less being carried by electrochemical reactions that slowly consume Li inventory.

More Details

Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME

ACS Applied Materials and Interfaces

Harrison, Katharine L.; Goriparti, Subbu G.; Merrill, Laura C.; Long, Daniel M.; Warren, Benjamin A.; Perdue, Brian R.; Casias, Zachary C.; Cuillier, Paul C.; Boyce, Brad B.; Jungjohann, Katherine L.

Lithium-metal anodes can theoretically enable 10x higher gravimetric capacity than conventional graphite anodes. However, Li-metal anode cycling has proven difficult due to porous and dendritic morphologies, extensive parasitic solid electrolyte interphase reactions, and formation of dead Li. We systematically investigate the effects of applied interfacial pressure on Li-metal anode cycling performance and morphology in the recently developed and highly efficient 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane electrolyte. We present cycling, morphology, and impedance data at a current density of 0.5 mA/cm2 and a capacity of 2 mAh/cm2 at applied interfacial pressures of 0, 0.01, 0.1, 1, and 10 MPa. Cryo-focused ion beam milling and cryo-scanning electron microscopy imaging in cross section reveal that increasing the applied pressure during Li deposition from 0 to 10 MPa leads to greater than a fivefold reduction in thickness (and therefore volume) of the deposited Li. This suggests that pressure during cycling can have a profound impact on the practical volumetric energy density for Li-metal anodes. A “goldilocks zone” of cell performance is observed at intermediate pressures of 0.1–1 MPa. Increasing pressure from 0 to 1 MPa generally improves cell-to-cell reproducibility, cycling stability, and Coulombic efficiency. However, the highest pressure (10 MPa) results in high cell overpotential and evidence of soft short circuits, which likely result from transport limitations associated with increased pressure causing local pore closure in the separator. All cells exhibit at least some signs of cycling instability after 50 cycles when cycled to 2 mAh/cm2 with thin 50 μm Li counter electrodes, though instability decreases with increasing pressure. In contrast, cells cycled to only 1 mAh/cm2 perform well for 50 cycles, indicating that capacity plays an important role in cycling stability.

More Details
18 Results
18 Results