Publications

56 Results
Skip to search filters

QSCOUT Progress Report, June 2022 [Quantum Scientific Computing Open User Testbed]

Clark, Susan M.; Norris, Haley R.; Landahl, Andrew J.; Yale, Christopher G.; Lobser, Daniel L.; Van Der Wall, Jay W.; Revelle, Melissa R.

Quantum information processing has reached an inflection point, transitioning from proof-of-principle scientific experiments to small, noisy quantum processors. To accelerate this process and eventually move to fault-tolerant quantum computing, it is necessary to provide the scientific community with access to whitebox testbed systems. The Quantum Scientific Computing Open User Testbed (QSCOUT) provides scientists unique access to an innovative system to help advance quantum computing science.

More Details

Three-Photon Optical Pumping for Trapped Ion Quantum Computing

Hogle, Craig W.; Ivory, Megan K.; Lobser, Daniel L.; Ruzic, Brandon R.; DeRose, Christopher T.

In this report we describe the testing of a novel scheme for state preparation of trapped ions in a quantum computing setup. This technique optimally would allow for similar precision and speed of state preparation while allowing for individual addressability of single ions in a chain using technology already available in a trapped ion experiment. As quantum computing experiments become more complicated, mid-experiment measurements will become necessary to achieve algorithms such as quantum error correction. Any mid-experiment measurement then requires the measured qubit to be re-prepared to a known quantum state. Currently this involves the protected qubits to be moved a sizeable distance away from the qubit being re-prepared which can be costly in terms of experiment length as well as introducing errors. Theoretical calculations predict that a three-photon process would allow for state preparation without qubit movement with similar efficiencies to current state preparation methods.

More Details

Engineering the Quantum Scientific Computing Open User Testbed

IEEE Transactions on Quantum Engineering

Clark, Susan M.; Lobser, Daniel L.; Revelle, Melissa R.; Yale, Christopher G.; Bossert, David B.; Burch, Ashlyn D.; Chow, Matthew N.; Hogle, Craig W.; Ivory, Megan K.; Pehr, Jessica; Salzbrenner, Bradley S.; Stick, Daniel L.; Sweatt, W.C.; Wilson, Joshua M.; Winrow, Edward G.; Maunz, Peter

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, the QSCOUT allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this article is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.

More Details

Detecting and tracking drift in quantum information processors

Nature Communications

Proctor, Timothy J.; Revelle, Melissa R.; Nielsen, Erik N.; Rudinger, Kenneth M.; Lobser, Daniel L.; Maunz, Peter; Blume-Kohout, Robin J.; Young, Kevin

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

More Details

Experimental Demonstration of a Cheap and Accurate Phase Estimation

Physical Review Letters

Rudinger, Kenneth M.; Kimmel, Shelby; Lobser, Daniel L.; Maunz, Peter

We demonstrate an experimental implementation of robust phase estimation (RPE) to learn the phase of a single-qubit rotation on a trapped Yb+ ion qubit. We show this phase can be estimated with an uncertainty below 4×10-4 rad using as few as 176 total experimental samples, and our estimates exhibit Heisenberg scaling. Unlike standard phase estimation protocols, RPE neither assumes perfect state preparation and measurement, nor requires access to ancillae. We crossvalidate the results of RPE with the more resource-intensive protocol of gate set tomography.

More Details

Micro-fabricated ion traps for Quantum Information Processing; Highlights and lessons learned

Maunz, Peter L.; Blume-Kohout, Robin J.; Blain, Matthew G.; Benito, Francisco B.; Berry, Christopher W.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Dagel, Amber L.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Lobser, Daniel L.; Mizrahi, Jonathan M.; Nielsen, Erik N.; Resnick, Paul J.; Rembetski, John F.; Rudinger, Kenneth M.; Scrymgeour, David S.; Sterk, Jonathan D.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Stick, Daniel L.

Abstract not provided.

Quantum Graph Analysis

Maunz, Peter L.; Sterk, Jonathan D.; Lobser, Daniel L.; Parekh, Ojas D.; Ryan-Anderson, Ciaran R.

In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

More Details

Micro-fabricated ion traps for Quantum Information Processing

Maunz, Peter L.; Hollowell, Andrew E.; Lobser, Daniel L.; Nordquist, Christopher N.; Benito, Francisco M.; Clark, Craig R.; Clark, Susan M.; Colombo, Anthony P.; Fortier, Kevin M.; Haltli, Raymond A.; Heller, Edwin J.; Resnick, Paul J.; Rembetski, John F.; Sterk, Jonathan D.; Stick, Daniel L.; Tabakov, Boyan T.; Tigges, Chris P.; Van Der Wall, Jay W.; Dagel, Amber L.; Blain, Matthew G.; Scrymgeour, David S.

Abstract not provided.

56 Results
56 Results